One-week Course on Genetic Analysis and Plant Breeding 21 - 25 January 2013, CIMMYT, Mexico

Inclusive Composite Interval Mapping (ICIM)

Jiankang Wang, CIMMYT China and CAAS E-mail: jkwang@cgiar.org; wangjiankang@caas.cn Web: http://www.isbreeding.net

Outlines

- Importance of the background control
- ICIM for additive QTL
- ICIM for additive and dominance QTL
- The BIP functionality in QTL lciMapping

Importance of the background control

Variance of the sample mean

- Random samples $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$
- Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Distribution of the sample mean

$$\overline{X} \sim N(\mu, \frac{1}{n}\sigma^2)$$

• The smaller the variance, the higher significance in hypothesis test!

Two putative unlinked QTL

Overall mean	Additi effect	ive	Additiv variano	/e ce	Genetic variance	Error variance	H ²	
	QTL1	QTL2	QTL1	QTL2				
20	2	1.5	4	2.25	6.25	1	0.86	

QTL distribution under no background control (upper) and background control (lower)

Inclusive Composite Interval Mapping (ICIM) for additive QTL

Li, H., G. Ye, and J. Wang*. 2007. A modified algorithm for the improvement of composite interval mapping. **Genetics** 175: 361-374.

The single additive QTL model

$$G = \mu + aw$$

- Take DH population as an example
- G: mean genotypic value of QTL genotypes QQ or qq
- μ: mean of the two homozygous QTL genotypes
- *a*: additive effect of QTL
- w: indicator of QTL genotype. 1 for QQ; -1 for qq

Derive QTL genotype from its flanking markers

Marker interval		Sample	Freq.	QTL genotype	
Left	Right	size		QQ (w=1)	Qq (w=-1)
AA (x _L =1)	BB (x _R =1)	n ₁	½(1-r)	$\frac{1}{2}(1-r_{L}-r_{R}+r_{L}r_{R})$	$\frac{1}{2}r_{L}r_{R}$
AA (x _L =1)	bb (x _R =-1)	n ₂	½r	½(1-r _L)r _R	½r _L (1-r _R)
Aa (x _L =-1)	BB (x _R =1)	n ₃	½r	½r _∟ (1-r _R)	½(1-r _L)r _R
Aa (x _L =-1)	bb (x _R =-1)	n ₄	½(1-r)	$\frac{1}{2}r_{L}r_{R}$	$\frac{1}{2}(1-r_{L}-r_{R}+r_{L}r_{R})$

$$E(w \mid x_{\rm L}, x_{\rm R}) = \lambda_{\rm L} x_{\rm L} + \lambda_{\rm R} x_{\rm R}$$

$$\lambda_{\rm L} = \frac{1}{2}(f_1 + f_2) = \frac{r - r_{\rm L} + r_{\rm R} - 2r_{\rm L}r_{\rm R}}{2r(1 - r)} \qquad \lambda_{\rm R} = \frac{1}{2}(f_1 - f_2) = \frac{r + r_{\rm L} - r_{\rm R} - 2r_{\rm L}r_{\rm R}}{2r(1 - r)}$$

Mean of flanking markers

 $E(G \mid x_{\mathrm{L}}, x_{\mathrm{R}}) = \mu + aE(w \mid x_{\mathrm{L}}, x_{\mathrm{R}}) = \mu + a\lambda_{\mathrm{L}}x_{\mathrm{L}} + a\lambda_{\mathrm{R}}x_{\mathrm{R}}$

- Properties
 - The QTL additive effect is completely absorbed by its two nearest flanking markers

The linear model for multiple QTLs

$$G = \mu + \sum_{j=1}^{m} a_j w_j$$

$$E(w_j \mid \mathbf{X}) = \lambda_{j(\mathbf{L})} x_j + \lambda_{j(\mathbf{R})} x_{j+1}$$

$$E(G \mid \mathbf{X}) = \mu + \sum_{j=1}^{m} a_j (\lambda_{j(L)} x_j + \lambda_{j(R)} x_{j+1}) \stackrel{\text{c}}{=} \beta_0 + \sum_{j=1}^{m+1} \beta_j x_j$$

$$y_i = E(G \mid \mathbf{X}) + \varepsilon_i = \beta_0 + \sum_{j=1}^{m+1} \beta_j x_{ij} + \varepsilon_i$$

Genomic scanning for additive QTL $\Delta y_i = y_i - \sum_{\substack{j \neq k, k+1}} \hat{b}_j x_{ij}$

- Phenotype adjusted by the previous linear model
- Properties of the adjusted phenotypes
 - QTL on the current interval is retained
 - QTLs on other intervals are eliminated, thus the background genetic variation is controlled

ICIM in a barley DH population

One-dimensional scanning on the barley genome, step = 1 cM

QTL identified by ICIM in the barley DH population

QTL name	Position (cM)	Left marker	Right marker	LOD	PVE (%)	Additive
qKWT2H-1	84	Pox	BCD351B	4.10	0.43	3.63
qKWT2H-2	138	ABC620	MWG882	6.36	-0.56	6.21
qKWT2H-3	190	BCD453B	ABG317	5.45	0.53	5.6
qKWT3H	27	Ugp2	Ugp1	3.23	0.38	2.99
qKWT5H	5	Act8B	MWG502	31.33	-1.47	43.92
qKWT7H-1	4	iPgd1A	BCD129	7.41	-0.59	7.07
qKWT7H-2	96	MWG626	VAtp57A	18.35	-1.01	20.53

Results from a simulated population

Inclusive Composite Interval Mapping (ICIM) for additive and dominance QTL

Zhang, L., H. Li, Z. Li, and J. Wang*. 2008. Interactions between markers can be caused by the dominance effect of QTL. **Genetics** 180: 1177-1190.

The single additive and dominance QTL model $G = \mu + aw + dv$

- Take F2 population as an example
- G: mean genotypic value of QTL genotypes QQ or qq
- μ: mean of the two homozygous QTL genotypes
- *a*: additive effect of QTL
- *d*: dominance effect of QTL
- w: indicator of QTL genotypes
 - 1 for QQ; 0 for Qq; -1 for qq
- v: indicator of QTL genotypes
 - 0 for QQ; 1 for Qq; 0 for qq

Probability of the three QTL genotypes under each of the nine marker types

Left marker	Right mark	t ker	QQ (w=1, v=0) (<i>m</i> +a)	Qq (w=0, v=1) (<i>m</i> + <i>d</i>)	qq (w=-1, v=0) (<i>m-a</i>)
AA	BB	$\frac{1}{4}$	$(1-r_1)^2(1-r_2)^2$	$\frac{1}{2}r_1(1-r_1)r_2(1-r_2)$	$\frac{1}{4}r_1^2r_2^2$
AA	Bb	$\frac{1}{2}($	$(1-r_1)^2 r_2 (1-r_2)$	$\frac{1}{2}r_1(1-r_1)(1-r_2)^2 + \frac{1}{2}r_1(1-r_1)r_2$	$r^{2} \frac{1}{2} r_{1}^{2} r_{2} (1 - r_{2})$
AA	bb	$\frac{1}{4}($	$(1-r_1)^2 r_2^2$	$\frac{1}{2}r_1(1-r_1)r_2(1-r_2)$	$\frac{1}{4}r_1^2(1-r_2)^2$
•••	•••				

The expected genotypic value of an individual with known marker types

 $E(G \mid x_1, x_2, y_1, y_2) = \mu + a \times E(w \mid x_1, x_2, y_1, y_2)$ $+ d \times E(v \mid x_1, x_2, y_1, y_2)$

where x_1 and y_1 are the indicators for the left marker, x_2 and y_2 are the indicators for the right marker, similarly defined to the QTL genotypes

Relationship between marker class mean and marker effect (including marker interactions)

$-\mu + f_1 a + g_1 d$		1	1	1	0	0	1	0	0	0		$\left\lceil \mu + \Delta \right\rceil$
$\mu + f_2 a + g_2 d$		1	1	0	0	1	0	1	0	0		$A_{\rm L}$
$\mu + f_3 a + g_3 d$		1	1	-1	0	0	-1	0	0	0		$A_{\rm R}$
$\mu + f_4 a + g_4 d$		1	0	1	1	0	0	0	1	0		$D_{ m L}$
$\mu + g_5 d$	=	1	0	0	1	1	0	0	0	1	×	$D_{ m R}$
$\mu - f_4 a + g_4 d$		1	0	-1	1	0	0	0	-1	0		AA
$\mu - f_3 a + g_3 d$		1	-1	1	0	0	-1	0	0	0		AD
$\mu - f_2 a + g_2 d$		1	-1	0	0	1	0	-1	0	0		DA
$\mu - f_1 a + g_1 d$		1	-1	-1	0	0	1	0	0	0		DD_{20}

Relationship between marker effects and QTL effects

	1	$\int u + \frac{1}{2}(g_1 + g_2)d$
$\mu + \Delta$		$\mu + 2(81 + 83)\mu$
$A_{\rm L}$		f_2a
$A_{\rm R}$		$\frac{1}{2}(f_1 - f_3)a$
$D_{\rm L}$		$(-\frac{1}{2}g_1 - \frac{1}{2}g_3 + g_4)d$
$D_{\rm R}$	=	$(-\frac{1}{2}g_1 + g_2 - \frac{1}{2}g_3)d$
AA		$\frac{1}{2}(g_1 - g_3)d$
AD		0
DA		0
		$\left[(\frac{1}{2}g_1 - g_2 + \frac{1}{2}g_3 - g_4 + g_5)d \right]$

The additive QTL effect "a" only causes additive marker effects. But the dominance QTL effect "d" causes additive by additive, and dominance by dominance marker interactions as well as dominance marker effects

The linear model of genotypic values on markers in F₂

The expectations of w and v (indicators of QTL genotype) under each marker class can be proved as:

$$E(w \mid x_{\mathrm{L}}, x_{\mathrm{R}}, y_{\mathrm{L}}, y_{\mathrm{R}}) = \lambda_{\mathrm{L}} x_{\mathrm{L}} + \lambda_{\mathrm{R}} x_{\mathrm{R}}$$

$$E(v \mid x_{\mathrm{L}}, x_{\mathrm{R}}, y_{\mathrm{L}}, y_{\mathrm{R}}) = \delta + \rho_{\mathrm{L}} y_{\mathrm{L}} + \rho_{\mathrm{R}} y_{\mathrm{R}} + \lambda \lambda x_{\mathrm{L}} x_{\mathrm{R}} + \rho \rho y_{\mathrm{L}} y_{\mathrm{R}}$$

$$E(G \mid x_{\mathrm{L}}, x_{\mathrm{R}}, y_{\mathrm{L}}, y_{\mathrm{R}}) = \mu + \Delta + A_{\mathrm{L}} x_{\mathrm{L}} + A_{\mathrm{R}} x_{\mathrm{R}} + D_{\mathrm{L}} y_{\mathrm{L}} + D_{\mathrm{R}} y_{\mathrm{R}} + AA x_{\mathrm{L}} x_{\mathrm{R}} + DD y_{\mathrm{L}} y_{\mathrm{R}}$$

Properties of the linear model in F₂

- The additive and dominance effects of the flanked QTL are completely absorbed by the six variables in the model above.
- Interactions between marker variables may be declared as interaction between QTL by mistake when using ANOVA.
- But from our analysis, interactions between marker variables can be caused simply by dominance effects of QTL.

Multiple QTL model in F₂

 For multiple QTL, assume there are m QTL located on m intervals defined by m+1 markers on one chromosome, then the genotypic value of an F₂ individual is defined as:

$$G = \mu + \sum_{j=1}^{m} [a_{j}w_{j} + d_{j}v_{j}]$$

where w_j and v_j are the indicators for genotypes at the *j*th QTL.

The linear model in F₂ for multiple QTL

• The genotypic value of an F₂ individual with known marker types can be re-organized as:

$$E(G \mid \mathbf{X}, \mathbf{Y}) = \beta_0 + \sum_{j=1}^{m+1} \beta_j x_j + \sum_{j=1}^{m+1} \gamma_j y_j + \sum_{j=1}^m \beta_{j,j+1} x_j x_{j+1} + \sum_{j=1}^m \gamma_{j,j+1} y_j y_{j+1}$$

$$y = E(G | \mathbf{X}, \mathbf{Y}) + \varepsilon$$

= $\beta_0 + \sum_{j=1}^{m+1} \beta_j x_j + \sum_{j=1}^{m+1} \gamma_j y_j + \sum_{j=1}^m \beta_{j,j+1} x_j x_{j+1} + \sum_{j=1}^m \gamma_{j,j+1} y_j y_{j+1} + \varepsilon$

Property of the linear model for QTL mapping in F₂

- The QTL effects will be completely absorbed by the six variables of the two closest markers.
- The linear model is suitable for QTL mapping in F₂ populations, as it completely explains both additive and dominance variations.

Genomic scanning for additive and dominance QTL

$$\Delta y_i = y_i - \sum_{j \neq k, k+1} [\hat{\beta}_j x_{ij} + \hat{\gamma}_j y_{ij}] - \sum_{j \neq k} [\hat{\beta}_{j,j+1} x_{ij} x_{i,j+1} + \hat{\gamma}_{j,j+1} y_{ij} y_{i,j+1}]$$

- Phenotype adjusted by the previous linear model
- Propertied of the adjusted phenotypes
 - QTL on the current interval is retained
 - QTLs on other intervals are eliminated, thus the background genetic variation is controlled

Hypothesis test of QTLs in F₂

• The two hypotheses used to test the existence of QTL at the scanning position are

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 H_A : at least two of μ_1, μ_1 and μ_3 are not equal

• The logarithm likelihood under H_A is

$$L_{A} = \sum_{j=1}^{9} \sum_{i \in S_{j}} \log[\sum_{k=1}^{3} \pi_{jk} f(\Delta P_{i}; \mu_{k}, \sigma^{2})]$$

where S_j denotes individuals belonging to the j^{th} marker class (*j*=1, 2, ..., 9), π_{jk} (*k*=1, 2, 3) is the proportion of the k^{th} QTL genotype in the j^{th} class, and $f(\cdot; \mu_k, \sigma^2)$ is the density function of the normal distribution $N(\mu_k, \sigma^2)$.

Estimation of genotypic means and genetic effects in F₂

- Use EM algorithm to have the estimation of μ_1, μ_2 and μ_3
- So the genetic effects can be estimated by

$$\hat{\mu} = \frac{1}{2}(\hat{\mu}_1 + \hat{\mu}_3)$$
$$\hat{a} = \frac{1}{2}(\hat{\mu}_1 - \hat{\mu}_3) \quad \hat{d} = \hat{\mu}_2 - \hat{\mu}$$

LOD score in F₂

• Parameters under H_0 were calculated as:

$$\hat{\mu}_0 = \frac{1}{n} \sum_{i=1}^n \Delta P_i$$
 $\hat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (\Delta P_i - \hat{\mu}_0)^2$

 From which the maximum likelihood under *H*₀, and the LOD score between *H_A* and *H*₀ can be calculated.

Interval mapping in previous soybean F2 population

QTL identified in the soybean F2 population

Position (cM)	Left marker	Right marker	LOD	PVE (%)	Additive	Dominance
92	*Satt255	*Satt339	32.73	47.07	-10.42	1.01
95	*Satt339	*Satt237	33.69	47.50	-9.72	8.06

QTL distribution models in simulation

- Six QTL with different levels of dominance and a genome consisting of 8 chromosomes.
- Each chromosome is 140 cM long, with 15 evenly distributed codominant markers.
- Three QTL distribution models.

QTL distribution models in simulation

QTL	а	d	Mod	el I	Мос	lel II	Мос	del III	Genotypic	Phenotypic variation	
			Chr	сМ	Chr	сM	Chr	сМ	explained (%)	explained (%)	
QTL1	1	0	1	25	1	25	1	25	11.43	8.00	
QTL2	0	1	2	55	1	55	2	55	5.71	4.00	
QTL3	1	1	3	25	2	25	3	25	17.14	12.00	
QTL4	1	-1	4	55	2	55	1	55	17.14	12.00	
QTL5	1	1.5	5	25	3	25	2	25	24.29	17.00	
QTL6	1	-1.5	6	55	3	55	3	55	24.29	17.00	

Simulation of the mapping populations

- F₂ populations were simulated by the genetics and breeding simulation tool of QuLine (to be introduced on Day 5).
- QTL mapping using ICIM was implemented by the software QTL IciMapping.

Theoretical marker effects in the genetic model used in simulation

- The expected additive, dominance, additive by additive, and dominance by dominance effects of the two flanking markers associated with each QTL is shown in the following table.
- It indicated that the dominance of a QTL could complicate the coefficients of the two markers flanking a QTL, and cause the interactions between markers.

Expected marker effects in simulation

QTL	$(d)\mu_d$	$(a)A_1$	$(a)A_2$	$(d)D_1$	$(d)D_2$	$(d)AA_{12}$	$(d)DD_{12}$	Interaction variation (%)
QTL1	0.000	0.498	0.498	0.000	0.000	0.000	0.000	0.0
QTL2	0.253	0.000	0.000	0.248	0.248	-0.248	0.243	21.8
QTL3	0.253	0.498	0.498	0.248	0.248	-0.248	0.243	5.7
QTL4	-0.253	0.498	0.498	-0.248	-0.248	0.248	-0.243	5.7
QTL5	0.379	0.498	0.499	0.371	0.371	-0.371	0.364	9.6
QTL6	-0.379	0.498	0.498	-0.371	-0.371	0.371	-0.364	9.6

QTL mapping in simulated F₂ populations

- There is no clear classification on the phenotype, and it is impossible to deduce the number of QTL without the assistance of molecular markers.
- Set the LOD threshold at 3.0. The two probabilities for entering and removing variables were set at 0.01 and 0.02. The scanning step is 1 cM.

Mapping results of the simulated F2 populations

QTL	LOD	PVE	True	Est.	True	Est. add.	True	Est.
	score	(%)	Position	Position	add.	effect	dom.	dom.
			(cM)	(cM)	effect		effect	effect
QTL dist	ributior	n model						
QTL1	16.52	6.67	25	28	1	0.88	0	-0.11
QTL2	7.67	3.27	55	53	0	0.03	1	0.85
QTL3	25.11	11.28	25	24	1	0.86	1	1.08
QTL4	35.46	16.43	55	57	1	0.74	-1	-1.58
QTL5	37.12	16.74	25	26	1	1.05	1.5	1.38
QTL6	28.44	13.16	55	55	1	0.84	-1.5	-1.22

Comparison of ICIM with IM

Power analysis of CIM and ICIM from 100 simulations

 $\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

An actual rice F₂ population

- 180 individuals
- The cross was made in Chengdu, China, in July 2002 between the *indica* rice variety and Nipponbare.
- 137 SSR markers.
- The whole genome was of 2046.2 cM, and the average marker distance was 17.1 cM.
- A number of agronomic traits were investigated in the field.

QTL mapping in the actual F_2 population

- In the real population, few F₂ individuals are shorter than PA64s, indicating most, if not all, reduced height alleles are harbored by PA64s.
- Set the LOD threshold at 3.0. The two probabilities for entering and removing variables were set at 0.01 and 0.02. Scanning step is 1 cM.

QTL distribution

Trait	R ² of additive	R ² of additive and	Absolute	Absolute degree of dominance (d/a)					
	(%)	dominance (%)	<=0.25	(0.25, 0.75]	(0.75, 1.25]	>1.25	-		
PH	25.84	51.56	2	1	1	5	9		
HD	16.12	41.37	1	1	1	3	6		
PL	25.58	61.26	5	3	1	8	17		
FL	20.86	40.00	0	2	0	3	5		
SPK	25.64	27.09	1	1	1	1	4		
TKW	20.11	20.11	2	0	2	1	5		
DP	19.45	24.87	1	1	0	1	3		
GL	30.69	41.96	1	1	0	0	2		
GW	26.63	26.63	2	2	0	0	4		
RLW	37.63	45.70	1	3	1	1	6		
		Total	16	15	7	23	61		

Notes: PH=plant height, HD=heading date, PL= panicle length, FL=flag leaf length, SPK=spikelets per panicle, TKW=thousand kernel weight, DP=density of panicle, GL=grain length, GW=grain width, RLW=ratio of grain length and width. 44

Distribution of PVE (%) of QTLs

Phenotypic variation explained(%)

QTL for height and maturity

Trait	QTL	Chr	Distance to left marker	Add	Dom	LOD	PVE(%)
Plant	QPh1-1	1	12	-0.57	-7.98	8.04	12.03
height	QPh1-2	1	19.5	-8.59	0.59	15.54	25.57
(Ph)	QPh3-1	3	16.9	4.35	-4.86	6.51	13.30
	QPh3-2	3	11.4	-4.69	-1.00	5.04	6.84
	QPh4	4	13.7	-3.56	-2.09	4.61	5.53
	QPh5	5	13	-0.44	-4.48	3.13	3.86
	QPh6	6	6.2	-0.79	-5.05	3.17	4.96
	QPh7	7	7	0.26	6.48	5.27	7.56
	QPh12	12	2.4	-1.66	3.93	3.98	5.44
Heading	QHd1	1	22.1	1.74	-0.30	3.65	7.27
date (Hd)	QHd3	3	19.9	0.88	-3.70	6.04	21.09
	QHd4	4	0.2	-0.77	1.85	3.58	5.24
	QHd8	8	5.7	-1.41	-1.46	4.79	8.20
	QHd10	10	0.3	-1.78	-0.80	4.85	7.21
	QHd11	11	6.2	0.15	-3.03	5.71	11.70

The BIP functionality in QTL IciMapping

Six methods in BIP

- SMA: single marker analysis (Soller et al., 1976. Theor. Appl. Genet. 47: 35-39)
- IM-ADD: the conventional simple interval mapping (Lander and Botstein, 1989. Genetics 121: 185-199)
- ICIM-ADD: inclusive composite interval mapping of additive (and dominant) QTL (Li et al., 2007. Genetics 175: 361-374. Zhang et al., 2008. Genetics 180: 1177-1190)
- IM-EPI: interval mapping of digenic epistatic QTL
- ICIM-EPI: inclusive composite interval mapping of digenic epistatic QTL (Li et al., 2008. Theor. Appl. Genet. 116: 243-260)
- SGM: selective genotyping mapping (Lebowitz et al., 1987. Theor. Appl. Genet. 73: 556–562)

Interface of the BIP functionality

LOD profile of ICIM additive mapping (ICIM-ADD)

GLNJ2002

Position in the whole genome

Figures of interacting QTL from ICIM epistatic mapping (ICIM-EPI)

