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In wheat breeding, it is a difficult task to select the most suitable parents for making crosses
aimed at the improvement of both grain yield and grain quality. By quantitative genetics theory,
the best cross should have high progeny mean and large genetic variance, and ideally yield and
quality should be less negatively or positively correlated. Usefulness is built on populationmean
and genetic variance, which can be used to select the best crosses or populations to achieve the
breedingobjective. In this study,we first compared fivemodels (RR-BLUP, BayesA, BayesB, Bayes
ridge regression, and Bayes LASSO) for genomic selection (GS) with respect to prediction of
usefulness of a biparental cross and two criteria for parental selection, using simulation. The two
parental selection criteria were usefulness and midparent genomic estimated breeding value
(GEBV). Marginal differences were observed among GS models. Parental selection with
usefulness resulted in higher genetic gain than midparent GEBV. In a population of 57 wheat
fixed lines genotyped with 7588 selected markers, usefulness of each biparental cross was
calculated to evaluate the cross performance, a key target of breeding programs aimed at
developing pure lines. It was observed that progeny mean was a major determinant of
usefulness, but the usefulness ratings of quality traits were more influenced by their genetic
variances in the progeny population. Near-zero or positive correlations between yield andmajor
quality traits were found in some crosses, although they were negatively correlated in the
population of parents. A selection index incorporating yield, extensibility, and maximum
resistance was formed as a new trait and its usefulness for selecting the crosses with the best
potential to improve yield and quality simultaneously was calculated. It was shown that
applying the selection index improved both yield and quality while retaining more genetic
variance in the selected progenies than the individual trait selection. It was concluded that
combining genomic selection with simulation allows the prediction of cross performance in
simulatedprogenies and thereby identifies candidateparents before crosses aremade in the field
for pure-line breeding programs.
©2018CropScience Society of China and Institute of CropScience, CAAS. Productionandhosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under
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1. Introduction
Breeding techniques have evolved rapidly in the last two
decades. Historically, breeders used only phenotypic traits to
make key progeny advance decisions, but the efficiency of this
practice is reduced by genotype-by-environment (G × E)
interaction, errors of measurement, and limitations of phe-
notyping methods. For example, wheat quality traits are
normally tested in later breeding generations owing to (1)
the lack of sufficient seeds in early generations and (2) the
expense and time required by quality testing in the lab. For
this reason, marker-assisted selection (MAS) was introduced
in early generations to enable selection on such traits and
increase selection efficiency [1–3]. MAS involves two major
steps. First, a biparental population is developed to identify
quantitative trait loci (QTL) for traits of interest; then, markers
linked to the identified QTL are used in selection [3, 4].
Nowadays, QTL mapping for detecting genes for breeding
traits in major crops is routine [3], and functional markers
have been developed using cloned-gene information [5].
However, the practical use of MAS in breeding programs is
limited for various reasons, including genetic background
interactions of identified QTL, large G × E interaction effects,
and low power to detect minor QTL [3, 4].

To overcome the disadvantages of MAS, genomic selection
(GS) using genomewide markers to estimate trait breeding
values of individuals was proposed [6, 7]. GS involves
establishing a prediction model in a training population
using both phenotypic and genotypic data, and predicting
trait genomic estimated breeding value (GEBV) for individuals
with only genotypic information [6]. Compared to MAS and
prediction methods based only on pedigree information, GS
can often result in higher genetic gain and better prediction
accuracy in recurrent selection and hybrid performance
prediction [8–12]. GS has been intensively studied in major
crops [8, 13, 14] and for key traits such as yield, disease
resistance, and quality [15, 16].

In pure-line (or, equivalently, fixed-line) breeding such as
in wheat, one of the critical challenges for breeders is to
identify suitable parents for creating genetic variation to
maximize selection response in subsequent breeding cycles
[17, 18]. As in hybrid breeding programs, the number of
possible crosses is usually far greater than the number that
breeders can make in the field. Desirable crosses should have
high means and large genetic variances in progeny popula-
tion, affording breeders higher chances to select superior
progenies. To evaluate crosses among a large number of
parental lines by accounting for both population mean and
genetic variance, the usefulness concept was proposed [19].
By definition, usefulness is a function of progeny mean,
genetic variance, and heritability. A modification of useful-
ness, called superior progeny value, was proposed by Zhong
and Jannink [20]. It focuses on mean and genetic variance of
the progenies by ignoring heritability, which is equivalent to
usefulness when heritability is equal to 1.

Progeny mean of a biparental cross can be well predicted
by the midparent value from the two parents. However,
predicting the genetic variance of in a progeny population is
not easy. Phenotypic distance, pedigree-based parentage
distance, and genetic distance have been proposed to predict
the genetic variance of progeny [19, 21]. One problem with
these predictors is that they provide the same variance
estimate for all traits, a practice that does not reflect reality
[22]. Some approaches have used GS to predict progeny
genetic variance [22–26]. However, different GS models
performed inconsistently well on different traits [27–29]. Few
studies have been conducted on the prediction of usefulness
under different GS models and the consequent genetic gain
after progeny selection.

In wheat breeding, although grain yield is the primary
focus, breeders want to improve several quality traits at the
same time. Normally, quality traits such as grain protein
content are negatively correlated with yield and highly
influenced by G × E interaction. Breeding programs would be
more efficient if the best crosses and their parents could be
predicted and identified. Parental-selection strategy, based on
the predicted progeny variance either by assuming linkage
equilibrium or by accounting for linkage disequilibrium
between parents, has been evaluated for improving grain
yield, grain protein, loaf volume, andmixing time individually
[24]. There has been no report on parental selection to
improve both yield and grain quality. Few studies have
focused on other important quality traits such as extensibil-
ity, extension area, maximum resistance, and stability time,
which reflect protein quality. Two previous studies showed
that the application of GS rapidly reduced genetic diversity
[30, 31]. It is not clear how to maintain genetic diversity when
using GS for cross prediction.

The objectives of this study were (1) to evaluate the ability
of different GS models to predict usefulness under different
trait architectures, (2) to evaluate genetic gain using useful-
ness in parental selection, in comparison with midparent
GEBV, and (3) to evaluate different parental selection criteria
to arrive at the parents best able to improve yield and grain
quality together while maintaining genetic diversity. A
simulation experiment was conducted for objectives (1) and
(2) and a population of 57 wheat fixed lines was used for
objective (3).
2. Materials and methods

2.1. Plant materials, field experiment, and phenotyping

A wheat population was constructed from 48 high quality
and three high-yielding cultivars or advanced lines bred in
China and six high-quality cultivars from the U.S and
Australia. Names and origins of the 57 wheat fixed lines are
presented in Supplementary Table S1. For phenotyping, the 57
wheat fixed lines were evaluated in two locations: Jining,
Shandong province, and Gaoyi, Hebei province in two seasons
from 2013 to 2015, using randomized complete block designs.
Each trial had two replications, each of 6 rows 4 m in length
and 0.2 m in width for each plot. Yield and thousand-kernel
weight were evaluated in both seasons. Other yield compo-
nents and agronomic traits including spike number, kernel
number, heading date, and plant height were evaluated in
Jining and Gaoyi only in the 2013–2014 season [32].
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Grain quality parameters were evaluated in the 2013–2014
season. Firmness was assessed by the single-kernel charac-
terization system (SKCS 4100 Perten Instruments AB,
Sweden). Grain protein content was assessed by near-
infrared spectroscopy (Foss 1241, Sweden) and reported on
a 14% grain moisture basis. Grain samples were tempered
and milled with a Buhler Quadrumat mill (MLU 220, Uzvil,
Switzerland) using method AACC 26-21A. Dough quality
parameters were assessed by mixograph, farinograph, and
extensograph using methods AACC54-40A, 54–21, and
54–10, respectively. The direct extraction rate was set at
65%.

The 11 traits studied included yield, thousand-kernel
weight (TKW), spike number (SN), kernel number (KN),
heading date (HD), plant height (PH), protein content (PC),
extensibility (EXT), extension area (EA), maximum resistance
(MR), and stability time (ST).

2.2. DNA extraction and genotyping

Wheat leaf tissues were sampled and DNA was extracted by
the modified CTAB method [33]. Genotypic data for cultivars
was obtained with the 90 K iSelect SNP chip [34] featuring
81,587 SNPs. SNP genotyping was performed with Genome
Studio. A total of 38,833 SNPs remained for the 57 genotypes
after one round of quality control. Further quality control
measures included the removal of monomorphic markers,
SNPs with minor-allele frequencies lower than 0.05, and SNPs
with heterozygosity greater than 20%. After SNP filtering, 7588
SNPs with known genetic map positions on the map of Wang
et al. [34] were selected. Distribution of the selected SNPs on
the 21 wheat chromosomes is presented in Fig. 1. SNP
genotype at each locus was coded as (1, 0, −1), where 1
indicated the homozygous genotype of themajor allele, −1 the
homozygous genotype of the minor allele, and 0 the hetero-
zygous genotype. The 57 wheat lines together with their
phenotypic traits and SNP genotyping data formed the
training population to be used for evaluating prediction
accuracy of GS models and parental selection strategies for
improving yield and quality.
Fig. 1 – Distribution of 7588 selected SN
2.3. Phenotypic data analysis

For each phenotypic trait, the following linearmodel was used
to conduct analysis of variance (ANOVA) and test the
significance of G × E interactions [35].

Yijk ¼ μþ Gi þ Ej þ Rk jð Þ þ GEij þ eijk ð1Þ

In Eq. (1), Yijk represents a phenotypic observation, μ the
overall mean, Gi the effect of genotype i, Ej the effect of
location–year combination (environment) j, Rk(j) the effect of
replication k nested in environment j, GEij the G × E interac-
tion between genotype i and environment j, and eijk the
residual effect associated with genotype i in environment j
and replication k. Trait heritability per plot and per mean was
calculated by Eq. (2).

H2
per plot ¼

σ2
g

σ2
g þ σ2

ge þ σ2
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In Eq. (2), σg
2 represents genotypic variance, σge

2 the variance
of G × E interaction, σerr

2 the residual variance, m the number
of location–year combinations, and r the number of replica-
tions in each environment [35].

Best linear unbiased predictions (BLUPs) were obtained for
each trait using the model described in Eq. (1) except that the
genotypic effect was defined as random, assuming G~N(0,σg

2).
ANOVAwas performedwith QTL IciMapping software [36] and
BLUPs were calculated with the lme4 package in R [37]. Pearson
correlations among traits were calculated using BLUPs of
phenotypic traits.

A selection index incorporating yield, maximum resis-
tance, and stability time was constructed for improving the
three traits simultaneously. Economic weights were set at 0.6,
0.2, and 0.2 for yield, maximum resistance, and extensibility,
respectively. The index was calculated as 0.6 × yield
+0.2 × maximum resistance +0.2 × extensibility. This index
reflected twomajor wheat breeding objectives, grain yield and
industrial quality. Yield was given higher weight than the
Ps on the 21 wheat chromosomes.
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other two quality traits, as it is more important than quality in
wheat breeding. The other two quality traits were considered
equally important. Predicted genotypic values (BLUPs), which
account for genetic correlations between traits [38], were used
to calculate the index.
2.4. Simulation experiment

A simulation study was conducted to assess the prediction
accuracy and genetic gain afforded by different GS models,
using 57 parents. The genotyping data of the parents at the
7588 SNPs was the same as that of the training population. To
assess the impact of genetic architectures of different traits,
the number of QTL was set at three levels: 30, 50, and 100. QTL
effects were generated from the geometric distribution [1] as
shown in Eq. (3).

QTLk ¼
L−1
Lþ 1

� �k

ð3Þ

In Eq. (3), QTLk is additive effect of the kth QTL effect and L
is the number of QTL. SNPs corresponding to the three QTL
numbers were randomly sampled from the 7588 SNPs and
used as QTL in each genetic architecture. The remaining SNPs
were used as markers in prediction and simulation. Favor-
ability or unfavorability of alleles at loci in the parents
depended on their SNP genotypes.

The phenotype of each of the 57 parents was simulated
according to the linear model yi = li + ei, where yi is the
simulated phenotypic value of parent i, li is the genotypic
value obtained by summarizing all QTL effects in parent i, and
ei is the random error of parent i from the normal distribution
ei~N(0,σe

2). Three levels of trait heritability: 0.3, 0.5, and 0.8,
were used to represent low, medium, and high heritability,
respectively. Error variance was calculated as σ2

e ¼ σ2
g

H2 −σ2
g for

each heritability level. Phenotypes were simulated for a total
number of nine genetic architectures and repeated 10 times,
resulting in 90 simulated data sets.

The usefulness (U) of a cross or the progeny population
from the cross is defined as U = μ + ihσg, where μ is mean of
the progeny population derived from the cross, i is the
standardized selection intensity based on the selected pro-
portion, h is the square root of the trait heritability, and σg is
the standard deviation of genetic variance of the progeny
population. In this study, we followed Zhong and Jannink [20]
by ignoring h in the formula. The U of each biparental cross
was estimated by the following steps. First, five GS models
were applied to each simulated phenotypic data set to obtain
marker effects. The ridge regression BLUP model and four
Bayesian models (Bayes A, Bayes B, Bayes ridge regression,
and Bayes LASSO) were implemented with the R packages
rrBLUP and BGLR [39, 40]. Parameters of all Bayesian models
were set according to Perez and de los Campos [40]. The
iteration number of the Bayesianmodels was set at 12,000 and
the first 3000 iterations were discarded as burn-in [40].

Second, a half-diallel mating design was used for the 57
parents, resulting in 1596 biparental crosses. For each cross,
5000 recombinant inbred lines (RIL) were simulated with the
R/qtl package [41] using the genetic map of Wang et al. [34].
GEBVs of the 5000 RILs were calculated from the estimated
marker effects and simulated RIL genotypes. Finally, a
progeny mean was obtained by averaging the GEBVs of the
5000 RILs and genetic variances of the progeny were calcu-
lated accordingly. The estimated progeny mean and genetic
variance were used to calculate usefulness at three propor-
tions of selection: 0.10, 0.05, and 0.01. The true usefulness
and genetic variance of each cross were calculated from QTL
information in the corresponding genetic architecture.

Prediction accuracy for progeny mean, progeny genetic
variance, and usefulness were calculated as the Pearson
coefficient of correlation between true and predicted values
of the 1596 crosses. Correlation between midparent GEBV and
true usefulness was also calculated for evaluating whether
midparent GEBV was adequate for predicting usefulness. For
each simulated data set, genetic gains from different selection
proportions and predictionmodels were calculated as follows.
(1) The 100 crosses with highest usefulness were selected. For
each selected cross, the simulated RILs were selected accord-
ing to the corresponding selection proportion. (2) Mean of the
true genotypic values of the selected progeny was denoted
as TVP, and mean of genotypic values in each simulated data
set was denoted as TVS. Genetic gain was calculated as
(TVP − TVS) / σtvs, where σtvs is the standard deviation of TVS.
For comparison with the selection by usefulness, midparent
GEBV was used to select the top 100 crosses and genetic gain
was calculated similarly.

2.5. Parental selection schemes in training population

Fivefold cross validation was performed to assess the predic-
tion accuracies of the GS models for all traits in the training
population. Missing marker data were imputed using the EM
algorithm implemented in the A. mat function in the rrBLUP R
package [39]. The full training data set was divided into five
subsets of equal size. For each validation, four of the five
subsets were used as a training set and the remaining subset
as a validation set. The cross validation was repeated 10
times. Genomic prediction accuracy was calculated as the
correlation between GEBVpre and OBV, where GEBVpre was
GEBV predicted by GS models, and OBV was BLUP obtained
from the phenotypic analysis. The model with the highest
prediction accuracy was intended to be used in subsequent
analyses. However, no significant difference amongmodels in
usefulness prediction in the simulation experiment or the
training population was found. The best crosses predicted by
the five models were largely the same. In cross validation,
Bayes B performed slightly better and was accordingly used
for estimating marker effects and performing subsequent
analyses in the training population.

Usefulness at a selection proportion of 0.05 was calculated
for all traits in the training population, following the same
approach as applied in the simulation experiment with all
7588 SNPs. Four schemes were considered to select parents
most suitable for improving yield and quality: (1) select
parents that produce high-yield usefulness crosses, then
select 10% of their simulated progeny that have highest EXT,
and finally select from these progeny the 50% with highest
MR; (2) select parents producing high-MR usefulness crosses,
then select 10% of their simulated progeny with highest EXT,
and finally select from these the 50% with highest yield; (3)
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select parents that producing high-EXT usefulness crosses,
then select the 10% of their simulated progenywith highest MR,
and finally select from these the 50% with highest yield; (4)
using the selection indexdescribed above in the phenotype data
analysis section, select parents based on the usefulness of the
index in their derived crosses, and then select 5% of their
simulated progeny with highest index value. For each scheme,
the top 100 crosses were selected and the mean and genetic
variance of the selected progenies was calculated accordingly.
The selection response of each trait for each scheme was
obtained by subtracting the mean of trait BLUPs in the training
population from the mean of the selected progeny.
3. Results

3.1. Analysis of variance and correlation between phenotypic
traits

The results of ANOVA for the 11 phenotypic traits are summa-
rized in Table 1. All traits showed highly significant differences in
genotypic effect among the 57 wheat lines. G × E interaction was
significant for all traits except spike number. Coefficient of
variation (CV) ranged from 0.07 to 0.58. Protein content had the
smallest CV (0.07) and stability time had the largest (0.58). Trait
heritability at theplot level ranged from0.45 to 0.93.Heritability at
the level of means across environments and replications ranged
from 0.57 to 0.99 (Table 1). Heritability per mean is always higher
than heritability per plot because less variance from G × E
interaction and random error is included in the variance of
phenotypic mean (Eq. (2)). Heading date had the lowest heritabil-
ity at 0.57, owing to a large amount of missing data. Only one
location was included in the ANOVA for heading date, due to the
large amount of missing data in one other location.

Trait correlations are presented in Table 2. Correlations
between quality traits ranged from 0.12 to 0.94. MR and ST
were significantly correlated with each other, but not with PC
and EXT. EXT had the highest negative correlation with yield.
Yield and TKW both were negatively correlated with quality
traits, but correlations between yield and MR and between
yield and ST were close to zero and not significant. In contrast
Table 1 – Analysis of variance of yield, yield components, and a

Trait Mean ± SD VG

Yield (kg ha−1) 7549.20 ± 1182.45 3314.00⁎⁎⁎

Thousand-kernel weight (g) 41.75 ± 6.04 24.56⁎⁎⁎

Spike number 40.29 ± 7.85 41.96⁎⁎⁎

Kernel number 33.08 ± 5.80 11.16⁎⁎⁎

Heading date (d)a 180.98 ± 3.39 27.76⁎⁎⁎

Plant height (cm) 77.69 ± 9.90 89.96⁎⁎⁎

Protein content (%) 11.40 ± 0.82 0.53⁎⁎⁎

Extension area (cm2) 105.83 ± 34.70 1148.51⁎⁎⁎

Extensibility (mm) 169.64 ± 20.93 354.47⁎⁎⁎

Maximum resistance (BU) 481.71 ± 154.50 23,100.02⁎⁎⁎

Stability time (min) 14.18 ± 8.27 56.16⁎⁎⁎

CV, coefficient of variation; VG, estimated variance of genotypic effects; V
and ⁎⁎⁎, significant at the 0.05 and 0.001 probability levels, respectively; ns
a Heading date was analyzed only in Jining owing to large numbers of m
to the other quality traits, MR and ST both showed positive but
nonsignificant correlations with other yield components and
agronomic traits except for plant height.

3.2. Accuracy of genomic selection models in the simulation
experiment

Heritability was themain factor that influenced the accuracy of
progeny variance prediction (Fig. 2). The accuracy ranged from
0.17 to 0.22 at the low heritability of 0.3, from 0.25 to 0.32 at the
moderate heritability of 0.5, and from 0.37 to 0.42 at the high
heritability of 0.8. The prediction accuracy was slightly affected
by QTL number. The accuracy was increased by 0.04 from 30 to
100 QTL at the heritability of 0.3, increased by 0.05 from 30 to
100 QTL at the heritability of 0.5, and increased by 0.03 from 30
to 100 QTL at the heritability of 0.8. A minor difference in
prediction accuracy was observed among different GS models
(Fig. 2). Bayesian LASSO performed slightly better for QTL
numbers 30 and 50, but slightly underperformed for QTL
number 100. This may be due to that Bayesian LASSO can
estimate a few large QTL effects accurately.

The prediction accuracy of usefulness obtained in the
simulation experiment showed a trend similar to that of progeny
genetic variance (Figs. 2 and 3). Heritability exerted a strong
influence on the prediction accuracy of usefulness. Accuracy
ranged from0.25 to 0.43 at the lowheritability of 0.30, from0.36 to
0.53 at the moderate heritability of 0.50, and from 0.40 to 0.61 at
the high heritability of 0.8. With the decrease in selection
proportion from 0.1 to 0.01, prediction accuracy decreased from
0.48 to 0.41 on average. A similar trend was observed across
different heritabilities and QTL numbers. Because different GS
models provided similar predictions of midparent GEBV, only
midparent GEBV from rrBLUP is presented here. Prediction
accuracies obtained from midparent GEBV were consistently
lower than those obtained from usefulness calculated by GS
models (Fig. 3). When heritability increased from 0.3 to 0.8, on
average accuracy from usefulness was 0.01 to 0.05 higher than
that frommidparent GEBV. In contrast, accuracy fromusefulness
increased from0.02 to 0.04, comparedwithmidparent GEBV. This
trend was also observed with the increasing QTL number. GS
models showed marginal differences in all combinations of QTL
gronomic and quality traits.

VGE CV H2

(per plot)
H2

(per mean)

606.97⁎⁎⁎ 0.16 0.66 0.96
2.73⁎⁎⁎ 0.14 0.79 0.98
2.89ns 0.19 0.53 0.83
1.78⁎ 0.18 0.45 0.79
NA 0.28 0.57 0.57
3.30⁎⁎⁎ 0.13 0.91 0.99
0.02⁎⁎⁎ 0.07 0.88 0.98
28.29⁎⁎⁎ 0.33 0.93 0.99
11.08⁎⁎⁎ 0.12 0.86 0.97
532.58⁎⁎⁎ 0.32 0.93 0.99
10.65⁎⁎⁎ 0.58 0.78 0.98

GE, estimated variance of G × E interactions; NA, data not available. ⁎

, non-significant.
issing data in Gaoyi.



Table 2 – Pearson coefficients of correlation between traits in training population, calculated with BLUPs.

Trait Yield TKW SN KN HD PH PC EA EXT MR ST

Yield * ** ns ns *** *** ns *** ns ns
TKW 0.33 *** ns ns ns ns *** *** ** ***
SN −0.40 −0.61 *** ns ** * ** *** ns ns
KN 0.25 0.10 −0.68 ns ** ns ns * ns ns
HD 0.24 −0.16 0.21 −0.07 ns ns ns ns ns ns
PH −0.59 −0.24 0.37 −0.35 0.05 *** ns *** ns ns
PC −0.56 −0.15 0.32 −0.23 0.06 0.46 ** *** ns ns
EA −0.23 −0.49 0.40 −0.07 0.02 0.12 0.36 *** *** ***
EXT −0.68 −0.46 0.50 −0.27 −0.25 0.47 0.52 0.46 ns ns
MR −0.02 −0.37 0.25 0.02 0.09 −0.05 0.22 0.94 0.15 ***
ST −0.07 −0.43 0.20 0.07 0.13 −0.07 0.15 0.73 0.12 0.77

TKW, thousand-kernel weight; SP, spike number; KN, kernel number; HD, heading date; PH, plant height; PC, protein content; EA, extension
area; EXT, extensibility; MR, maximum resistance; ST, stability time; ⁎, ⁎⁎, and ⁎⁎⁎, significant at the 0.05, 0.01, and 0.001 probability levels,
respectively; ns, non-significant.
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number, heritability, and selection proportion (Fig. 3). No single
model performed best in all genetic architectures.

3.3. Genetic gains from genetic selection models and parental
selection

Fig. 4 shows the genetic gains obtained from different GS
models and selection proportions. Heritability had a major
influence on genetic gain. Higher heritability resulted in higher
gain across all models and parental selection methods. Genetic
gains fromusefulnesswere consistently higher than those from
midparent GEBV across GSmodels and heritabilities. Gain from
usefulness was 0.06 higher than that frommidparent GEBV at a
heritability of 0.30, 0.08 higher at a heritability of 0.50, and 0.13
Fig. 2 – Prediction accuracy for progeny genetic variance among g
proportions. BL, Bayes LASSO; BRR, Bayes ridge regression.
higher at a heritability of 0.80. When selection proportion
decreased, the difference in genetic gain between usefulness
and midparent GEBV increased. Gain from usefulness was 0.01
to 0.03 higher for selection proportion 0.10, 0.01 to 0.05 higher
for selected proportion 0.05, and 0.04 to 0.09 higher for selection
proportion 0.01. QTL number also affected genetic gain at
different heritabilities. The trend of the effect of QTL number
was similar to those of heritability and selection proportion.
For selection proportions 0.10, 0.05, and 0.01, the respective
gains from usefulness were 0.01, 0.02, and 0.05 higher for QTL
number 30, 0.02, 0.04, and 0.05 higher for QTL number 50, and
0.03, 0.04, and 0.07 higher for QTL number 100. Genetic gains
for different GS models showed negligible differences across
genetic architectures.
enomic selection models, genetic architectures, and selection



Fig. 3 – Prediction accuracy of usefulness among genomic selection models, genetic architectures, and selection proportions.
BL, Bayes LASSO; BRR, Bayes ridge regression; Midparent, midparent GEBV; U, usefulness.
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3.4. Cross prediction and parental selection in the training
population

The accuracies of the five GS models for each trait in training
population are presented in Fig. 5. MR showed the lowest
prediction accuracy (r = 0.340 on average across models).
Yield and plant height showed the highest prediction
Fig. 4 – Genetic gains from different parental selection criteria an
ridge regression; Midparent, midparent GEBV.
accuracy (r = 0.811 and r = 0.807 on average across models).
In general, traits with high heritability showed high accuracy,
except for MR, EA, ST, and HD. Bayes B showed the highest
prediction accuracy for EA, HD, MR, PH, and TKW, Bayes ridge
regression showed the highest prediction accuracy for EXT,
KN, and SN, and rrBLUP showed the highest prediction
accuracy for ST, PC, Yield, and HD. Prediction accuracy from
d genomic selection models. BL, Bayes LASSO; BRR, Bayes



Fig. 5 – Prediction accuracy for different traits in the training population. TKW, thousand-kernel weight; SP, spike number; KN,
kernel number; HD, heading date; PH, plant height; PC, protein content; EA, extension area; EXT, extensibility; MR, maximum
resistance; ST, stability time; BL. Bayes LASSO; BRR, Bayes ridge regression.
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cross validation differed among traits and models (Fig. 5), but
simulation results showed little difference among models in
predicting cross usefulness and genetic gain (Figs. 3 and 4).
Bayes B gave the highest accuracy in predicting usefulness for
most traits and was accordingly chosen for further analyses in
the training population.

The triangular relationship shown in Fig. 6 was observed
between progeny mean and genetic variance of simulated
progeny for all traits. For yield, most crosses gave high
progeny means and low variances (Fig. 6-A). In contrast,
quality traits, for example MR, showed more complete
triangles (Fig. 6-B). In Fig. 6, the top 100 crosses predicted by
usefulness are highlighted in blue and located in the high
progeny mean area. The top 100 crosses predicted by
usefulness and midparent GEBV were largely common to all
traits. The number of crosses common to the five quality traits
ranged from 83 to 89, and for other traits from 85 to 92. In
general, there were fewer common crosses between useful-
ness and midparent GEBV for quality traits.

Trait correlations changed from parental to progeny
populations. As an example, Fig. 7 shows distribution of
Fig. 6 – Relationship between midparent GEBV and variance in e
population. The 100 crosses selected for highest trait usefulness a
correlations between two quality traits and yield. In the
training population, the correlation was −0.02 between MR
and yield, and −0.68 between EXT and yield (Table 2).
However, the correlations ranged from −0.61 to 0.63 for MR
(Fig. 7-A) with a mean of −0.008, and from −0.88 to 0.27 for EXT
(Fig. 7-B) with a mean of −0.51. Thus, even though a quality
trait showed a strong negative correlation with yield in
training population, it was still possible to see a positive
correlation in the progeny population derived from two
parents selected from the training population.

Table 3 presents selection responses and variances of the
selected progenies from four parental selection schemes.
Yield, EXT and MR were assumed to be the three targeted
traits. Scheme 1 generated the largest response for yield
(892.50), but the responses for EXT and MR were negative
(−15.19 and −48.73). For scheme 2, the response was near zero
for yield (4.35), but positive for EXT and MR (5.65 and 163.59).
The response for MR in scheme 2 was the largest among all
schemes. In scheme 3, the response for yield was negative
(−1029.15), but responses for EXT and MR were positive (25.97
and 3.29). The response for EXT in scheme 3 was the largest
ach biparental cross from the 57 fixed lines in the training
re highlighted in blue. A for yield; B for maximum resistance.



Fig. 7 – Frequency distribution of correlations between yield and maximum resistance (A), and between yield and extensibility
(B) in the 1596 biparental crosses from 57 parents in the training population.
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among all schemes. For scheme 4, the responses for yield and
MR were both positive (643.20 and 76.86), and the response for
EXT was negative (−3.70) but was higher than that for scheme
1. Responses for yield and MR from scheme 4 were the second
largest among the four schemes. For the other quality traits,
ST and EA, small positive responses (1.63 and 12.12) were
obtained from scheme 4 owing to the positive correlation
among quality traits (Table 2). For other yield components and
agronomic traits, near-zero responses were observed except
for plant height. Plant height showed a negative response in
scheme 4 (−3.76), which would be desirable when breeders
want to reduce the trait.

All parental selection schemes reduced genetic variance
significantly. In general, the larger the response observed for a
trait, the greater was the observed reduction in genetic
variance (Table 3). Genetic variance in selected progeny was
the smallest for yield in scheme 1 (647.55) but was the largest
in scheme 3 (8204.10). Because crosses in scheme 2 were
selected by usefulness on MR, genetic variance of MR in the
selected progeny (303.88) was smallest. Similarly, scheme 3
gave the smallest variance for EXT (15.87). Scheme 4 gave the
Table 3 – Selection response and genetic variance of the selecte
The top 5% progeny in each of the 100 selected crosses, for a tota
and variance. For comparison, the mean and variance of trainin

Trait Selection response

S1 S2 S3 S4 TP

Yield 892.50 4.35 −1029.15 628.20 7549.20
EXT −15.19 5.65 25.97 −3.70 169.63
MR −48.73 163.59 3.29 76.86 481.71
ST −2.13 5.16 0.67 1.63 14.18
TKW 0.93 −2.38 −3.73 −0.31 41.75
SN −0.87 1.95 3.98 −0.25 40.29
KN 0.00 −0.28 −1.22 0.37 33.08
EA −18.35 34.72 15.48 12.12 105.83
PC −0.51 0.26 0.42 −0.24 11.40
HD 0.33 0.23 −0.86 0.05 191.83
PH −0.75 −1.07 8.30 −3.76 77.69

TKW, thousand-kernel weight; SP, spike number; KN, kernel number; HD
area; EXT, extensibility; MR, maximum resistance; ST, stability time.
largest genetic variance in selected progenies for MR and EXT
(4157.07 and 36.64), and second largest genetic variance for
yield (206.09). For traits not included in the index, scheme 4
gave the highest genetic variances for EA and ST (231.73 and
8.92), second highest for PC (0.10), and second lowest for TKW
and SN (3.66 and 2.94).

Scheme 4 was the only one that gave positive responses for
yield and quality, and large genetic variances in the selected
progeny. Accordingly, it was used to select the parents for
yield and quality improvement. Table 4 presents the 10
crosses with the highest usefulness on selection index,
together with GEBVs of the two parents, midparent GEBV,
and progeny mean at a selection proportion of 0.05 for each
cross. Progeny mean greater than midparent GEBVs was
highlighted. ‘Fengdecunmai 5’ appeared most frequently in
the top ten crosses, indicating that this wheat cultivar can be
used as a good candidate parent for yield and quality
improvement. Progeny means of yield and MR were either
higher than or close to corresponding midparent GEBVs.
For EXT, progeny means in two crosses, ‘12CA29’ × ‘
Fengdecunmai 5’ and ‘Zhengmai 129’ × ‘Fengdecunmai 5’,
d progenies from four parental selection schemes (S1 to S4).
l of 25,000 simulated progeny, were used to calculate mean
g population (TP) are also presented.

Genetic variance of the selected progenies

S1 S2 S3 S4 TP

647.55 7353.60 8204.10 3091.35 41,962.35
23.30 35.88 15.87 36.64 321.86
2356.74 303.88 4036.00 4157.07 21,746.57
3.50 3.48 5.05 8.92 36.1
2.24 5.83 4.19 3.66 22.31
1.58 7.41 5.92 2.94 30.14
0.73 1.50 1.27 1.38 6.22
110.97 38.32 182.97 231.73 1078.54
0.04 0.06 0.47 0.10 0.48
0.16 0.27 0.89 0.18 1.58
6.60 26.60 14.26 6.85 82.31

, heading date; PH, plant height; PC, protein content; EA, extension



Table 4 – Top 10 candidate crosses selected by usefulness of selection index.

Biparental cross Yield EXT MR

P1 P2 Progeny P1 P2 MP Progeny P1 P2 MP Progeny P1 P2 MP

12CA29 Fengdecunmai 5 8302.5a 8140.5 8341.5 8241.0 168.7a 163.4 162.1 162.7 639.2 685.5 623.3 654.4
CA0998 Fengdecunmai 5 8640.0 9012.0 8341.5 8677.5 158.9a 140.0 162.1 151.1 517.6a 380.9 623.3 502.1
13CA47 Fengdecunmai 5 8292.0 8257.5 8341.5 8299.5 170.2a 176.2 162.1 169.1 587.1a 510.5 623.3 566.9
13CA48 Fengdecunmai 5 8259.0a 8056.5 8341.5 8199.0 169.8a 172.7 162.1 167.4 599.0 590.0 623.3 606.6
Jishi021 Fengdecunmai 5 8091.0a 7671.0 8341.5 8005.5 174.1a 181.0 162.1 171.6 663.0 715.1 623.3 669.2
Zhongyou 255 Fengdecunma i5 8140.5a 7890.0 8341.5 8115.0 174.7a 180.0 162.1 171.0 632.0a 639.0 623.3 631.1
12CA29 CA0998 8548.5 8140.5 9013.5 8575.5 161.3a 163.4 140.0 151.7 552.2a 685.5 380.9 533.2
Zhengmai 129 Fengdecunmai 5 8454.0 8569.5 8341.5 8455.5 166.2a 162.7 162.1 162.4 527.5 376.5 623.3 499.9
GY12023 Fengdecunmai 5 8230.5a 7921.5 8341.5 8131.5 169.3a 172.8 162.1 167.4 622.0 628.7 623.3 626.0
CA0996 Fengdecunmai 5 8530.5a 8599.5 8341.5 8470.5 161.6a 156.6 162.1 159.3 514.9a 328.8 623.3 476.0

EXT, extensibility; MR, maximum resistance; P1, parent 1; P2, parent 2; RILs was selected using a proportion of 0.05, and used in calculating the
progeny mean; MP, midparent GEBV.
a Progeny means over midparent GEBVs.
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were higher than those of both parents. For yield and MR,
none of the 10 crosses gave a progeny mean higher than
those of both parents. However, two crosses, ‘Zhongyou
255’ × ‘Fengdecunmai 5’ and ‘CA0996’ × ‘Fengdecunmai 5’,
gave positive responses for all three traits. The 10 crosses in
Table 4 gave positive responses for EXT and at least one other
trait among yield and MR, and could be used to improve yield
and at least one quality trait.
4. Discussion

4.1. Factors affecting prediction of genetic variance and usefulness

Genetic variance of the progeny population of a biparental
cross can be predicted by simulation. Heritability was the
most important factor that affected the accuracy of prediction
of genetic variance and usefulness. It has been shown that, for
a given number of markers, larger training population and
higher heritability increase the estimation accuracy of marker
effects [42]. Accurate estimation of marker effects resulted in
higher prediction accuracy for the progeny mean. Accord-
ingly, high accuracy of prediction of genetic variance and
usefulness was achieved when heritability was high (Figs. 2
and 3). An increase in accuracy of prediction of genetic
variance with higher heritability was also observed by Tiede
et al. [25]. Compared with heritability, QTL number had a
much smaller effect on accuracy of prediction of genetic
variance and usefulness.

When a GS model was used to predict individual GEBV,
prediction accuracy was influenced by trait genetic architec-
ture [27, 43–45]. In some studies, the investigated models had
similar prediction accuracy, but other studies showed signif-
icant differences in different traits [42, 46, 47]. In this study,
different accuracies were observed using cross validation for
five GS models (Fig. 5). However, when these models were
used to predict usefulness and progeny genetic variance of a
biparental cross, similar accuracies were observed. Lado et al.
[24] also reported that Bayes LASSO and rrBLUP yielded similar
marker effects and prediction accuracy in two populations
from CIMMYT's wheat breeding program.
4.2. Inclusion of genetic variance in cross performance prediction

The midparent value is a commonly used predictor for cross
prediction and parental selection. However, it does not account
for progeny genetic variance that affects genetic gain after
selection. Our simulation experiment demonstrated that paren-
tal selection by usefulness resulted in higher genetic gain. The
difference in genetic gain between usefulness and midparent
GEBV was larger under higher heritability, owing to the higher
accuracy in estimating genetic variance. Zhong and Jannink [20]
reported that influenceof progenygenetic variance onusefulness
decreased with an increase in QTL number. In our study, three
QTL numbers were used, but a decreasing trend was not
observed. The result in this study was in agreement with that
reported by Lehermeier et al. [48].

The relative gain between usefulness and midparent GEBV
changed with selection proportion. The smaller the selection
proportion, the larger was the relative gain (Fig. 4). This
observation is understandable when genetic variance is
considered in cross prediction. When the selection proportion
is large, genetic variance has less weight on usefulness. Thus,
parents selected by usefulness become similar to those
selected by midparent GEBV, and the genetic gains from the
two criteria become similar. It has been reported [48, 49] that
genetic variance was underestimated in a simulation ap-
proach. Thus, the effect of including genetic variance in cross
prediction could be larger than that observed in the simula-
tion experiment. In our simulation, 5000 RILs were simulated
from each biparental cross to enable precise estimation of
genetic gain under a small selection proportion. We under-
stand that the number of RILs could be different in practical
breeding. If early-generation selection is not considered, we
assume that the number of advanced lines from each cross
could be in the thousands.

4.3. Realization of parental selection through cross prediction
for improving multiple traits

When usefulness and midparent GEBV each was used for cross
prediction in the training population, a large number of common
crosses were found. This result shows that midparent GEBV
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dominated in cross prediction. In the training population,
because the ratio between variance of mean and variance of
genetic standard deviation was high for all traits (data not
shown), the effect of accounting for genetic variance in parental
selection becomes limited, according to Zhong and Jannink [20].
The finding that quality traits had slightly fewer common
crosses than yield, yield components, and agronomic traits
suggests that the usefulness of quality traits is more strongly
influenced by genetic variance than that of other traits. Similar
results were reported for silking date and protein concentration
inmaize [23], and protein content and loaf volume inwheat [24].

In the training population, triangular relationships were
found between predicted progeny mean and genetic variance
for all traits, as previously reported by Bernardo and Lado et
al. [23, 24]. Progeny generated by parents with extreme trait
values have low variance and low progenymean for low × low
crosses and high progenymean for high × high crosses. When
two parents have a large phenotypic difference, they generate
progenies with a medium mean and relatively high variance.
Thus, a triangular relationship is formed (Fig. 6). More crosses
with low variance and high progeny mean were observed for
yield than for quality traits, for example MR. This finding
differed from that of Lado et al. [24], who found that the
triangular relationship was stronger for quality traits than for
yield. The difference may be associated with population
structure, as each population has its own gene frequency,
genotypic frequency, trait heritability, and genetic variance
and correlation.

Improvement of quality and yield simultaneously is a
challenge in wheat breeding. Owing to the negative correla-
tion between yield and quality traits, a parental selection
scheme based on yield usefulness resulted in a negative
response for quality traits, and vice versa (Table 3). However,
individual genotypes may carry different favorable alleles,
and genetic correlations between traits in a progeny popula-
tion can be much different from that observed in the parental
population. Even when two traits were negatively correlated
in the parental population, positive correlations could be
observed in some progeny populations (Fig. 7). To improve
yield and quality simultaneously, parents that could generate
breeding populations with no or a positive correlation
between these target traits are desired. Trait correlation in
the parental population is also relevant. If traits are strongly
negatively correlated in a parental population, there is a low
possibility of identifying desirable parents. The structure of
the training population has been reported [50, 51] to affect
significantly the accuracy of GS, and it will likewise influence
parental selection for improving multiple traits.

When multiple traits are targeted in breeding, an index
combining trait values and economic weights can be con-
structed and then used in selection [52, 53]. In addition to
single-trait selection, a selection index constructed from yield
and two quality traits was used in this study. Parental
selection with the selection index resulted in positive re-
sponses for both yield and MR, and identified candidate
parents for improving yield and quality traits simultaneously
(Tables 3 and 4). The tradeoff effect on traits of interest could
be overcome by incorporating different weights in the index.
On the other hand, maintenance of genetic diversity is
important to achieving genetic gain in the next cycle of
breeding [30]. A high level of genetic diversity will also help
breeders to deal with potential challenges from unfavorable
environments, such as drought and other abiotic stresses [54].
In this study, we found that parental selection based on
usefulness of a selection index could result in higher genetic
variance in newly generated progenies than could other
parental selection schemes. Application of the selection
index for parental selection not only led to genetic gains for
both yield and quality, but also retained substantial genetic
variance for subsequent cycles of breeding.

4.4. Justifications for assumptions used in this study

In this study, genetic variance was estimated by simulation
and then used to calculate usefulness. There are other
methods for estimating genetic variance analytically [48, 49].
However, simulation is able to predict trait correlations in
newly generated progeny populations. In addition, no analytic
approach could predict genetic gain and genetic diversity after
parental selection. One other advantage is that more compli-
cated genetic models, such as epistasis, could be considered
in simulation as well [55, 56].

To simulate progenies and calculate usefulness from
progeny GEBV, marker effects were needed. The five genomic
selection models used in this study can estimate marker
effects. In genomic selection, there are some other methods,
such as genomic best linear unbiased prediction (GBLUP),
reproducing kernel Hilbert space (RKHS) and machine learn-
ing. However, those methods cannot give estimates of marker
effects and accordingly were not considered. The other
requirement for progeny simulation is a genetic linkage map
of markers and genes. During the SNP filtering process, 7588
SNPs on a consensus genetic map were finally chosen.
Considering the relatively small population size used in this
study, the SNP filtering process reduced redundancy of SNPs.
Lado et al. [24] employed two wheat populations, one of 1465
fixed lines genotyped with 3884 SNPs and the other of 5984
lines genotyped with 1164 SNPs. In comparison, we usedmore
SNPs with a smaller size of population.

We assumed an additive genetic model and found no
major differences among GS models in genetic variance
prediction. Non-additive effects (such as epistasis) may
influence the accuracy of genetic variance prediction. Incor-
porating epistasis may improve prediction accuracy; however,
modeling epistasis effects for a large number of markers is
still a challenge [57]. Incorporating epistasis variance in cross
prediction awaits further investigation. G × E interaction was
also not taken into account. Marker effects can be obtained by
including G × E interaction [58, 59], and then used to estimate
genetic variance for each environment. Like environment-
specific breeding values, optimal parents may be different
across environments. The value of incorporating G × E inter-
action in GS and cross prediction remains an open question.

In this study we simulated a large number of RILs for
predicting usefulness of a biparental cross, an operation that
is applicable to pure-line breeding programs such as for
wheat, soybean, and conventional rice. For hybrid breeding
programs such as for maize, breeders select suitable parents
to make superior F1 hybrids. However, in hybrid breeding,
breeders also need to cross two inbred parents to produce the
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next generation of inbreds. For this reason, cross prediction
using the progeny simulation approach employed in this
study will also be useful in inbred development for hybrid
breeding programs.
5. Conclusions

Minor differences were observed among GS models in
cross prediction. Use of the usefulness criterion for parental
selection resulted in higher genetic gain than use of
midparent GEBV. Selecting suitable parents to make crosses
using a simulation approach can disrupt the negative corre-
lation between yield and quality traits. Use of a selection
index is one option for selecting parents with the aim of
improving both yield and quality traits and maintaining
genetic diversity for long-term breeding objectives.

Supplementary data for this article can be found online at
https://doi.org/10.1016/j.cj.2018.05.003.
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