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ABSTRACT

F2 populations are commonly used in genetic studies of animals and plants. For simplicity, most
quantitative trait locus or loci (QTL) mapping methods have been developed on the basis of populations
having two distinct genotypes at each polymorphic marker or gene locus. In this study, we demonstrate
that dominance can cause the interactions between markers and propose an inclusive linear model that
includes marker variables and marker interactions so as to completely control both additive and
dominance effects of QTL. The proposed linear model is the theoretical basis for inclusive composite-
interval QTL mapping (ICIM) for F2 populations, which consists of two steps: first, the best regression
model is selected by stepwise regression, which approximately identifies markers and marker interactions
explaining both additive and dominance variations; second, the interval mapping approach is applied to
the phenotypic values adjusted by the regression model selected in the first step. Due to the limited
mapping population size, the large number of variables, and multicollinearity between variables,
coefficients in the inclusive linear model cannot be accurately determined in the first step. Interval
mapping is necessary in the second step to fine tune the QTL to their true positions. The efficiency of
including marker interactions in mapping additive and dominance QTL was demonstrated by extensive
simulations using three QTL distribution models with two population sizes and an actual rice F2

population.

SIGNIFICANT progress in the development of poly-
morphic molecular markers has led to the in-

tensive use of quantitative trait locus or loci (QTL)
mapping in genetically segregating populations
(Paterson et al. 1991; Lynch and Walsh 1998;
Mackay 2001; Barton and Keightley 2002; Doerge

2002). A number of statistical methods have been
developed for QTL detection and effect estimation. For
regression-based methods, see Haley and Knott

(1992), Martinez and Curnow (1992), Haley et al.
(1994), Wright and Mowers (1994), Whittaker et al.
(1996), and Feenstra et al. (2006); for maximum-
likelihood-based methods, see Lander and Botstein

(1989), Knott and Haley (1992), Zeng (1994), Kao

et al. (1999), and Li et al. (2007, 2008); and for Bayesian
model-based methods, see Satagopan et al. (1996),
Ball (2001), Sen and Churchill (2001), Sillanpää

and Corander (2002), Yi et al. (2003), and Bogdan

et al. (2004).
For simplicity, most QTL mapping methods (here we

mean linkage mapping for quantitatively inherited traits
in biparental populations derived through controlled

fertilization rather than association mapping in natu-
rally mated populations) have been developed on the
basis of backcross populations, doubled haploids, or
recombination inbred lines derived from two parental
lines (represented by P1 and P2), where two individual
genotypes occur at each marker locus or QTL. F2

populations have been widely used in genetic studies
of animals and plants since the rediscovery of Mendel’s
hybridization experiments. Relatively fewer methods
have been developed on the basis of F2 populations,
and dominance has sometimes been ignored (Wright

and Mowers 1994; Whittaker et al. 1996; Jia and Xu

2007). Using similar principles in interval mapping
(IM) as proposed by Lander and Botstein (1989),
Knott and Haley (1992) investigated the maximum-
likelihood methods for QTL mapping in F2 populations
using simulated data. However, it is generally agreed
that the mapping power of IM is low due to the lack of
background control, and linked QTL cannot be prop-
erly separated (Zeng 1994). For F2 crosses between
outbred lines, a mixed model was proposed to account
for the variation both between and within lines (Pérez-
Enciso and Varona 2000). On the basis of composite-
interval mapping (CIM) (Zeng 1994), Jiang and Zeng

(1995) used simulated F2 populations to demonstrate
multiple-trait QTL mapping.
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In populations consisting of two distinct genotypes,
QTL mapping is focused on additive effects, even
though the additive effect is defined differently in
different populations. For example, in a backcross
where P1 was used as the recurrent parent, the additive
effect at a specific locus is normally defined as half of the
difference between the P1 genotype and the F1 genotype
(Zeng 1994). In doubled haploids or recombination
inbred lines, the additive effect is defined as half of the
difference between the P1 genotype and the P2 geno-
type. Sometimes authors claimed their methods could
be extended to F2 populations (Zeng 1994). However,
we report here that dominance can unexpectedly
complicate the QTL mapping procedure by causing
interactions between markers. As a result, the interac-
tions detected between markers may be caused by the
dominance effect of a QTL, rather than by real epistasis
between interacting QTL.

Due to the lack of suitable QTL mapping methods for
epistasis, some authors have used two-way ANOVA
between markers to gain a rough idea of the importance
of epistasis (Yu et al. 1997; Hua et al. 2003). More
recently, Bayesian models have been widely investigated
for mapping epistasis (Ball 2001; Broman and Speed

2002; Yi et al. 2003; Baierl et al. 2006). ANOVA between
marker classes at one marker locus or two marker loci
and some Bayesian model-based QTL mapping meth-
ods are valid under the assumption that QTL are
completely linked with markers. Therefore, if QTL are
located between marker intervals, false interacting QTL
caused by the dominance effect may be detected by
using these methods.

In this study, we report an inclusive linear model that
includes interaction variables between two flanking
markers, capable of completely absorbing both additive
and dominance effects of QTL. On the basis of the linear
model, we propose the inclusive composite-interval map-
ping (ICIM) suitable for QTL studies using F2 populations.
Simulations were conducted to compare ICIM with
CIM, and an actual F2 population was used to investigate
QTL affecting plant height in rice (Oryza sativa L.).

MATERIALS AND METHODS

One-QTL model in F2 populations: For one QTL (Q and q
are the two alleles) in F2 populations, the genotypic value of an
individual with a known QTL genotype, i.e., QQ, Qq, or qq, is
written by

G ¼ m 1 aw 1 dv; ð1Þ

where m is the mean of the two homozygous genotypes QQ and
qq, a is the additive genetic effect, d is the dominance effect,
and w and v are indicators for QTL genotypes valued at 1 and 0
for QQ, 0 and 1 for Qq, and �1 and 0 for qq.

For two codominant markers (A-a and B-b) flanking the QTL,
nine marker classes can be found in F2 (Table 1). In F2

populations, two indicators (represented by x and y, respectively)
occur for each marker locus, similarly defined as indicators w
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and v for a QTL in model (1). The expectations of w and v, i.e.,
E(w) and E(v), can be calculated from the frequencies of the
three QTL genotypes in each marker class (Table 1). In QTL
mapping, the QTL genotype of an individual is usually
unknown, but the marker type or the class of its flanking
markers is known. In general, we can define the expected
genotypic value (the last column in Table 1) of an individual
with known marker types as

EðG j x1; x2; y1; y2Þ ¼ m 1 a 3 Eðw j x1; x2; y1; y2Þ
1 d 3 Eðv j x1; x2; y1; y2Þ; ð2Þ

where x1 and y1 are the indicators for the left marker, x2 and y2

are the indicators for the right marker, x1 and x2 have similar
values to w, and y1 and y2 have similar values to v. Similar to two
genes, we can define the additive effects of the two markers,
i.e., (a)A1 and (a)A2, dominance effects of the two markers, i.e.,
(d)D1 and (d)D2, and various interactions between the two
markers, i.e., (d)AA12, AD12, DA12, and (d)DD12 in Equation 3,
where m 1 ðdÞmd is the mean of the four homozygous marker
classes (Table 1):

m 1 f1a 1 g1d

m 1 f2a 1 g2d

m 1 f3a 1 g3d

m 1 f4a 1 g4d

m 1 g5d

m� f4a 1 g4d

m� f3a 1 g3d

m� f2a 1 g2d

m� f1a 1 g1d

2
66666666666666664

3
77777777777777775

¼

1 1 1 0 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 1 �1 0 0 �1 0 0 0

1 0 1 1 0 0 0 1 0

1 0 0 1 1 0 0 0 1

1 0 �1 1 0 0 0 �1 0

1 �1 1 0 0 �1 0 0 0

1 �1 0 0 1 0 �1 0 0

1 �1 �1 0 0 1 0 0 0

2
66666666666666664

3
77777777777777775

3

m 1 ðdÞmd

ðaÞA1

ðaÞA2

ðdÞD1

ðdÞD2

ðdÞAA12

AD12

DA12

ðdÞDD12

2
66666666666666664

3
77777777777777775

:

ð3Þ

By resolving the above linear equations, the relationship be-
tween marker effects and QTL effects can be identified; i.e.,

m 1 ðdÞmd

ðaÞA1

ðaÞA2

ðdÞD1

ðdÞD2

ðdÞAA12

AD12

DA12

ðdÞDD12

2
6666666666664

3
7777777777775

¼

m 1 1
2 ðg1 1 g3Þd

f2a
1
2 ðf1 � f3Þa
ð� 1

2 g1 � 1
2 g3 1 g4Þd

ð� 1
2 g1 1 g2 � 1

2 g3Þd
1
2 ðg1 � g3Þd
0
0
ð12 g1 � g2 1 1

2 g3 � g4 1 g5Þd

2
66666666666664

3
77777777777775

: ð4Þ

Clearly, the additive QTL effect (a) causes only additive
marker effects, i.e., (a)A1 and (a)A2, but the dominance QTL
effect (d) causes additive-by-additive and dominance-by-
dominance marker interactions, i.e., (d)AA12 and (d)DD12, as

well as dominance marker effects, i.e., (d)D1 and (d)D2. The
genetic model used in Equations 1 and 3 is usually called the
F‘ model (Zeng et al. 2005). It has been proved that the use of
other models such as the F2 model or the G2A model (Zeng

et al. 2005) cannot eliminate the influence of the dominance
effect on the interactions between markers either (results not
shown).

In Equation 4, f1, f2, f3, g1, g2, g3, g4, and g5 defined in Table 1
(similar to Table 1 in Haley and Knott 1992) are functions of
recombination frequencies and independent of QTL effects.
Denote

d

l91
l92
r91
r92
ll912

rr912

2
666666664

3
777777775
¼

1
2 ðg1 1 g3Þ
f2
1
2 ðf1 � f3Þ
ð� 1

2 g1 � 1
2 g3 1 g4Þ

ð� 1
2 g1 1 g2 � 1

2 g3Þ
1
2 ðg1 � g3Þ
ð12 g1 � g2 1 1

2 g3 � g4 1 g5Þ

2
6666666664

3
7777777775

: ð5Þ

The expectations of w and v under each marker class can be
proved as

Eðw j x1; x2; y1; y2Þ ¼ l91 3 x1 1 l92 3 x2 ð6Þ
and

Eðv j x1; x2; y1; y2Þ
¼ d 1 r91 3 y1 1 r92 3 y2 1 ll912 3 x1x2 1 rr912 3 y1y2: ð7Þ

Equation 6 has been widely used in mapping QTL with
additive effects regardless of the statistical method, e.g.,
regression analysis, maximum likelihood, or Bayesian models
(for examples see Zeng 1994; Whittaker et al. 1996; Kao et al.
1999; Ball 2001; Sen and Churchill 2001; Sillanpää and
Corander 2002; Yi et al. 2003; Bogdan et al. 2004; Feenstra

et al. 2006; Li et al. 2007). However, we have not seen Equation
7 used in QTL mapping studies of F2 populations.

Using Equations 6 and 7, the genotypic value of an F2

individual with known marker class can be represented by
marker variables and two-marker interactions as

EðG j x1; x2; y1; y2Þ
¼ m 1 a 3 Eðw j x1; x2; y1; y2Þ1 d 3 Eðv j x1; x2; y1; y2Þ
¼ b 1 ðaÞA1 3 x1 1 ðdÞD1 3 y1 1 ðaÞA2 3 x2 1 ðdÞD2 3 y2

1 ðdÞAA12 3 x1x2 1 ðdÞDD12 3 y1y2; ð8Þ

where b ¼ m 1 ðdÞmd, representing the mean of the four
homozygous marker classes (i.e., AABB, AAbb, aaBB, and aabb
in Table 1).

For clarity, we added the symbols of QTL effects to various
marker effects in Equations 3, 4, and 8. For example, ðdÞmd is
the additional mean contributed by QTL dominance, ðaÞA1 is
the additive effect of the left marker caused by QTL additive
effect, ðdÞAA12 is the additive-by-additive effect between the
left and right markers caused by QTL dominance effect,
and so on. Model (8) is a completely fitted model, and
coefficients in it contain all the information regarding QTL
location and effects. In other words, the additive and
dominance effects of the flanked QTL are completely
absorbed by the six variables in model (8). The nonzero
marker interactions (d)AA12 and (d)DD12, caused by the
dominance effect, indicate that marker variables by them-
selves cannot completely absorb the effects of QTL located
between the two markers.

The inclusive linear model for multiple QTL: For succinct-
ness, we assume there are m QTL located in m intervals defined

Interactions Caused by the Dominance Effect 1179



by m 1 1 markers on one chromosome. The genotypic value of
an F2 individual is defined as

G ¼ m 1
Xm

j¼1

½ajwj 1 dj vj �; ð9Þ

where wj and vj are the indicators for genotypes at the jth QTL.
By using Equations 6 and 7, the genotypic value of an F2

individual with known marker types can be reorganized as

EðGÞ ¼ m 1
Xm

j¼1

½ðdjÞmdj
1 ðajÞAj 3 xj 1 ðdjÞDj 3 yj

1 ðajÞAj11 3 xj11 1 ðdjÞDj11 3 yj11

1 ðdjÞAAj ;j11 3 xj xj11 1 ðdjÞDDj ;j11 3 yj yj11�

¼̂ b 1
Xm11

j¼1

lj 3 xj 1
Xm11

j¼1

rj 3 yj 1
Xm

j¼1

llj ;j11 3 xjxj11

1
Xm

j¼1

rrj ;j11 3 yj yj11;

where

b ¼ m 1
Xm

j¼1

ðdjÞmdj
; l1 ¼ ða1ÞA1; r1 ¼ ðd1ÞD1;

lj ¼ ðaj�1ÞAj 1 ðajÞAj and rj ¼ ðdj�1ÞDj 1 ðdjÞDj ;

where j ¼ 2; 3; � � � ;m;

lm11 ¼ ðamÞAm11; rm11 ¼ ðdmÞDm11;

and

llj ;j11 ¼ ðdjÞAAj ;j11 and rrj ;j11 ¼ ðdjÞDDj ;j11;

where j ¼ 1; 2; � � � ;m:

Therefore, the inclusive linear model simultaneously contain-
ing all markers and phenotyping errors is

P ¼ EðGÞ1 e

¼ b 1
Xm11

j¼1

lj 3 xj 1
Xm11

j¼1

rj 3 yj 1
Xm

j¼1

llj ;j11 3 xj xj11

1
Xm

j¼1

rrj ;j11 3 yj yj11 1 e; ð10Þ

where P is the phenotypic value of the trait of interest, and e is
the random environmental error.

It can be seen that coefficients in model (10) are affected
only by neighboring QTL. In other words, QTL effects will be
completely absorbed by the six variables of the two closest
markers. Model (10) is suitable for QTL mapping in F2

populations, as it completely explains both additive and
dominance variations. In some studies, marker interactions
were not included (for examples see Jiang and Zeng 1995;
Kao et al. 1999; Jia and Xu 2007), which may bias the QTL
mapping results and be problematic when extending to
epistatic mapping.

ICIM in F2 populations: Assume there are n individuals in
an F2 population. Similar to QTL mapping for other popula-
tions (Li et al. 2007, 2008), we adopted a two-step mapping
strategy. In the first step, stepwise regression was used to
estimate the parameters in model (10). Coefficients of those
variables not retained by stepwise regression were set at 0.

However, we did not exclude the possibility that other model
selection methods (Miller 1990; Piepho and Gauch 2001)
may achieve similar or better performance in model selection
than stepwise regression. In the second step, traditional
interval mapping (Lander and Botstein 1989) was con-
ducted on adjusted phenotypic values; i.e.,

DPi ¼ Pi �
X

j 6¼k;k11

½l̂j 3 xij 1 r̂j 3 yij �

�
X
j 6¼k

½ll̂j ;j11 3 xij xi;j11 1 rr̂j ;j11 3 yij yi;j11�; ð11Þ

where k and k 1 1 represent the two flanking markers of the
current testing position, i ¼ 1; 2; � � � ;n represents each F2

individual, and the circumflex means ‘‘estimated.’’ Under the
condition of isolated QTL (Whittaker et al. 1996), adjusted
values in Equation 11 contain all the location and effect in-
formation of QTL in the current interval, but at the same time,
QTL in other chromosomal intervals have been completely
controlled. At a testing position in the interval [k, k 1 1],
phenotypes of the three QTL genotypes QQ, Qq, and qq were
assumed to be normally distributed as N ðmk ;s

2Þ, where k ¼ 1,
2, 3, representing the three QTL genotypes, respectively. The
two hypotheses used to test the existence of QTL at the
scanning position are

H0: m1 ¼ m2 ¼ m3

vs.

HA: at least two of m1;m2; and m3 are not equal:

The logarithm likelihood under HA is, therefore,

LA ¼
X9

j¼1

X
i2Sj

log
hX3

k¼1

pjk f ðDPi ; mk ;s
2Þ
i
;

where Sj denotes individuals belonging to the jth marker class
( j ¼ 1, 2, . . . , 9; Table 1), pjk (k ¼ 1, 2, 3) is the proportion of
the kth QTL genotype in the jth class, and f ð�; mk ;s

2Þ is the
density function of the normal distribution N ðmk ;s

2Þ.
Most individuals in marker classes 1, 5, and 9 have QTL

genotypes QQ, Qq, and qq, respectively. Hence, the initial
parameters used in the EM algorithm (Dempster et al. 1977; Li

et al. 2007) can be defined as

m
ð0Þ
1 ¼

1

n1

Xn1

i¼1

DPi ; m
ð0Þ
2 ¼

1

n5

Xn11 ���1n5

i¼n11 ���1n411

DPi ;

m
ð0Þ
3 ¼

1

n9

Xn

i¼n11 ���1n811

DPi ;

and

s2ð0Þ ¼ 1

n1 1 n5 1 n9

hXn1

i¼1

ðDPi � m
ð0Þ
1 Þ21

Xn11 ���1n5

i¼n11 ���1n411

ðDPi�m
ð0Þ
2 Þ2

1
Xn

i¼n11 ���1n811

ðDPi � m
ð0Þ
3 Þ2

i
:

In the E-step, the posterior probabilities of an individual
belonging to the three QTL genotypes were calculated as

w
ð0Þ
ik ¼

pjk f ðDPi ; m
ð0Þ
k ;s2ð0ÞÞP3

l¼1 pjl f ðDPi ; m
ð0Þ
l ;s2ð0ÞÞ

;
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where i 2 Sj . In the M-step, parameters in the maximum-
likelihood equation were updated by

m
ð1Þ
k ¼

P
n
i¼1 w

ð0Þ
ik DPiP

n
i¼1 w

ð0Þ
ik

ðk ¼ 1; 2; 3Þ;

and

s2ð1Þ ¼ 1

n

Xn

i¼1

X3

k¼1

w
ð0Þ
ik ðDPi � m

ð1Þ
k Þ2:

The genetic effects in model (1) were therefore estimated by

m ¼ 1

2
ðm̂1 1 m̂3Þ; a ¼ 1

2
ðm̂1 � m̂3Þ; and d ¼ m̂2 � m:

Under the null hypothesis, the three QTL genotypes follow
the same normal distribution, denoted by N ðm0;s

2
0Þ. Param-

eters under H0 were calculated as

m̂0 ¼
1

n

Xn

i¼1

DPi and ŝ2
0 ¼

1

n

Xn

i¼1

ðDPi � m̂0Þ2;

from which the maximum likelihood under H0 and the LOD
score between HA and H0 can be calculated. Additional
hypotheses can be built to further test if the additive or the
dominance effect is significant; this is not discussed in detail in
this article.

QTL distribution models in simulation: We considered six
QTL with different levels of dominance and a genome
consisting of eight chromosomes in our simulation studies
(Table 2). Each chromosome is of 140 cM, with 15 evenly
distributed codominant markers. QTL1 has additive effect 1,
without a dominance effect. QTL2 has dominance effect 1,
without an additive effect. QTL3 can be viewed as completely
dominant, while QTL4 is completely recessive. Both QTL5
and QTL6 show overdominance, but in different directions.
No interactions between QTL were considered. Each QTL was
assumed to be located in the middle of a marker interval.

To investigate the effect of linkage on QTL mapping, we
considered three QTL distribution models (Table 2). QTL
were distributed on different chromosomes in model I, and
two QTL were linked on each of the first three chromosomes
in models II and III. In model I, QTL5 and QTL6 each
explained 24.3% of genotypic variation and 17.0% of the
phenotypic variance under heritability 0.7. QTL2 explained
the least genotypic and phenotypic variation among the six
defined QTL (Table 2).

F2 mapping populations were simulated by the genetics and
breeding simulation tool of QuLine, formerly called QuCim
(Wang et al. 2003, 2004). ICIM was implemented by the
software QTL IciMapping, and CIM was implemented by the
software QTL Cartographer (Wang et al. 2005). For CIM, we
applied ‘‘Model 6: Standard Model’’ and ‘‘3. Forward &
Backward Method’’ available in Cartographer. The two prob-
abilities for entering and removing variables were set at 0.01
and 0.02. For ICIM, the same probability levels were adopted
in the first step of stepwise regression. The threshold LOD
score was set at 3.0 for both methods.

One F2 population in rice: The actual F2 population used in
this study consists of 180 individuals and was derived by the
Rice Research Institute, Sichuan Agricultural University (Ye

et al. 2005, 2007). The cross was made in Chengdu, China, in
July 2002 between the indica rice variety PA64s (full name:
Pei’Ai 64s) and japonica rice variety Nipponbare. Nipponbare
was completely sequenced in 2002, and PA64s was partially
sequenced in the same year. The F1 population was planted in
Hainan, China, in December 2002, and the F2 population was
planted in Chengdu, China, in April 2003 for genotyping and
phenotyping. A total of 137 SSR markers were screened for
building the linkage map (Ye et al. 2005), and a number of
agronomic traits were investigated in the field (Ye et al. 2005,
2007). The whole genome was of 2046.2 cM, and the average
marker distance was 17.1 cM. Each of the 12 chromosomes had
6–12 relatively evenly distributed markers. We used ICIM for
QTL mapping of plant height, where the two probabilities for
entering and removing variables in the first step of stepwise
regression were set at 0.01 and 0.02, and the threshold LOD
score was set at 3.0.

RESULTS

Expected effects of the flanking markers: The
expected additive, dominance, additive-by-additive, and
dominance-by-dominance effects of the two nearest
flanking markers associated with each defined QTL in
Table 2 were calculated from Equation 4 and are shown
in Table 3. When the dominance effect is zero, i.e.,
QTL1 (a ¼ 1 and d ¼ 0), the two flanking markers have
only additive effects, the size of which is dependent on
the QTL additive effect and its location between the two
markers. In cases where the QTL was located at the
center of its flanking marker interval, both markers have
the same additive effect, which approximates half of the

TABLE 2

Six putative QTL and their distributions in a genome consisting of eight chromosomes, each of 140 cM and evenly distributed by
15 codominant markers

QTL
Additive
effect (a)

Dominance
effect (d)

Model I Model II Model III
Genotypic variation

explained (%)
Phenotypic variation

explained (%)Chr. cM Chr. cM Chr. cM

QTL1 1 0 1 25 1 25 1 25 11.4 8.0
QTL2 0 1 2 55 1 55 2 55 5.7 4.0
QTL3 1 1 3 25 2 25 3 25 17.1 12.0
QTL4 1 �1 4 55 2 55 1 55 17.1 12.0
QTL5 1 1.5 5 25 3 25 2 25 24.3 17.0
QTL6 1 �1.5 6 55 3 55 3 55 24.3 17.0

Genotypic and phenotypic variances explained by individual QTL were calculated for QTL distribution model I. The genetic
variance of each QTL in F2 is 1

2 a2 1 1
4 d2, and heritability in the broad sense was set at 0.7. Chr., chromosome.
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QTL additive effect (Table 3). Therefore, when the
dominance effect can be ignored, or the additive effect
is the only genetic effect of interest, including one
marker indicator for each marker locus will allow the
QTL additive effect to be absorbed. This is the case of
QTL mapping in populations consisting of two individ-
ual genotypes (Li et al. 2007), where the additive is the
only genetic effect of interest.

When there is no additive effect, i.e., QTL2 (a¼ 0 and
d ¼ 1), the two flanking markers do not have additive
effects either, but they do have additive-by-additive
interaction (Table 3). Obviously, this interaction was
caused by the dominance effect of QTL2 and did not
indicate there were two interacting QTL. When both
additive and dominance effects are present, i.e., QTL3–
QTL6, additive, dominance, additive-by-additive, and
dominance-by-dominance effects can all occur on the
two flanking markers (Table 3). The dominance effect
of a QTL causes not only marker dominance effects, but
also marker interactions (Equation 4 and Table 3).
Under linkage equilibrium and when each marker allele
had a frequency of 0.5, ANOVA indicated that marker
interactions caused by QTL2 explained .20% of the
variation, those caused by QTL3 and QTL4 each
explained .5% of the variation, and those caused by
QTL5 and QTL6 each explained �10% of the variation
between marker classes (Table 3).

The results from Equation 4 and Table 3 clearly
indicated that the dominance of a QTL could compli-
cate the coefficients of the two markers flanking a QTL
by causing interactions between markers. We used the
F‘ model, i.e., Equation 3, to illustrate the phenomenon
in this study. We have used other models such as the F2

or the G2A model (Zeng et al. 2005) and found they
would neither eliminate the marker interactions caused
by QTL dominance effect nor make the mapping
procedure less complicated. The consequence of this
phenomenon is that QTL mapping focusing on estima-
tion of marker effects may lead to erroneous conclu-
sions about QTL locations and effects.

Comparison of ICIM with CIM: In Figure 1, each
simulated QTL was assigned to a confidence interval of

15 cM centered at the true QTL location, and the power
for the confidence interval was estimated. QTL identi-
fied in other intervals were viewed as false positives. In
the confidence interval, if multiple peaks occurred, only
the highest one was counted. In other chromosome
regions, all peaks higher than the LOD threshold of 3.0
were counted, regardless of the distance between the
significant peaks (Li et al. 2007). Under population size
200, both ICIM and CIM resulted in high powers (i.e.,
.0.60) for QTL3–QTL6 (Figure 1, A, C, and E). QTL1
and QTL2 explain the least genetic variation (Table 2)
and their detection powers were relatively low. The
difference in powers between ICIM and CIM is minor,
except for QTL1 and QTL2 in models I and II and
QTL1–QTL3 in model III (Figure 1, A and E). The
distribution of QTL has effects on their detection
powers (Figure 1, C and E).

As expected, the increase in population size resulted in
the increased detection power for both methods (Figure
1A vs. 1B, Figure 1C vs. 1D, and Figure 1E vs. 1F). Under
population size 500, both CIM and ICIM had powers
close to 1 in detecting all QTL (Figure 1, B, D, and F).
The false discovery rate (FDR) is defined as the pro-
portion of false positives to the total number of signifi-
cant discoveries (Benjamini and Hochberg 1995). The
FDR of ICIM was always lower than that of CIM (Figure
1). The increase in population size not only improved
the detection power of ICIM, but also reduced its FDR.
For CIM, the increases in population size improved its
detection power, but did not reduce its FDR. As stated
earlier, false positives were counted without considering
a confidence interval; that is to say, any significant peaks
that were not within the QTL confidence intervals were
viewed as false positives, which resulted in a large number
of false positives for both methods. In the other aspect,
this may indicate that a higher LOD threshold should be
applied when using CIM or ICIM.

In Figure 2, power was calculated for every marker
interval on the genome, which allows monitoring QTL
locations if not located in the predefined intervals. It
can be clearly seen that false positives were around the
true QTL positions and were less likely to be located in

TABLE 3

Genetic effects of each QTL on its two flanking markers

QTL ðdÞmd ðaÞA1 ðaÞA2 ðdÞD1 ðdÞD2 ðdÞAA12 ðdÞDD12 Interaction variation (%)

QTL1 0.000 0.498 0.498 0.000 0.000 0.000 0.000 0.0
QTL2 0.253 0.000 0.000 0.248 0.248 �0.248 0.243 21.8
QTL3 0.253 0.498 0.498 0.248 0.248 �0.248 0.243 5.7
QTL4 �0.253 0.498 0.498 �0.248 �0.248 0.248 �0.243 5.7
QTL5 0.379 0.498 0.499 0.371 0.371 �0.371 0.364 9.6
QTL6 �0.379 0.498 0.498 �0.371 �0.371 0.371 �0.364 9.6

ðdÞmd is the additional mean caused by dominance, ðaÞA1 and ðaÞA2 are the additive effects of the left and right flanking
markers, ðdÞD1 and ðdÞD2 are the dominance effects of the two flanking markers, and ðdÞAA12 and ðdÞDD12 are the additive-
by-additive and dominance-by-dominance interaction between the two flanking markers. The last column represents the percent-
age of interaction variation under linkage equilibrium and allele frequency 0.5.
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chromosomal regions far from the predefined QTL or
in chromosomes where no QTL were located (Figure 2).
There is an obvious tendency for significant peaks
identified by ICIM for QTL distribution models II and
III to be closer to the true QTL locations (Figure 2, C–
F), indicating that ICIM is more capable of dissecting
linked QTL.

Estimated QTL location and effects from QTL
distribution model II are shown in Table 4. Unbiased
estimations of QTL locations and additive effects were
observed for ICIM and CIM under the two population
sizes. The dominance effects estimated by ICIM were
less biased than those estimated by CIM, indicating the
advantage of using model (10) in ICIM. Taking pop-
ulation size 500 as an example, the dominance effects
estimated by ICIM were 0.05, 0.98, 0.82,�0.87, 1.38, and
�1.38, corresponding to the true effects 0, 1, 1, �1, 1.5,
and�1.5, respectively. However, the effects estimated by
CIM were 0.39, 1.01, 0.61, �0.64, 0.94, and �0.90,
respectively. Considering the higher detection power,
lower FDR, and less biased estimation of dominance
effect, we can conclude that ICIM built on the inclusive
linear model (10) is a better method for mapping QTL
with additive and dominance in F2 populations. The
LOD score from ICIM was always higher than that from
CIM (Table 4), indicating the residual variation is better
controlled in ICIM.

Estimated QTL locations and effects from large
simulated F2 populations: To further illustrate the
outcomes from ICIM, we conducted QTL mapping on

the first simulated F2 populations with 500 individuals
from the three QTL distribution models (Figures 3, A–C,
and 4, A–F). The genotypic values of the two parents
and their F1 hybrid were 15, 5, and 16, respectively, for
the three QTL models. Phenotypic values in F2 for the
three QTL distribution models show continuous distri-
butions (Figure 3, A–C) that are similar to typical quan-
titative traits. There is no clear classification of the
phenotype, and it is impossible to deduce the number of
QTL without the assistance of molecular markers.

QTL mapping by ICIM found the difference in
genetic mechanism for the three seemingly similar
phenotypic distributions in Figure 3, A–C. For QTL
distribution model I, six clear peaks on the first six
chromosomes can be seen along the one-dimensional
LOD profile, indicating six unlinked QTL (Figure 4A).
The chromosomes or chromosomal regions not har-
boring QTL have LOD scores close to 0 (Figure 4A).
The six peaks were close to the true QTL position, and
the effects at those positions are shown in Table 5. The
estimated positions were at 28, 53, 24, 57, 26, and 55 cM,
corresponding to the true positions 25, 55, 25, 55, 25,
and 55 cM on the first six chromosomes. Along with
scanning, the additive and dominance effects (Figure
4B) and variation explained by QTL at the testing
positions can also be estimated. The estimated effects
at peak positions were close to the true effects in Table 3,
although some discrepancies were observed.

For QTL distribution model II, six clear peaks, two
each on the first three chromosomes, can be seen on the

Figure 1.—Power analysis of CIM
and ICIM from 100 simulations. (A)
QTL distribution model I and popula-
tion size 200; (B) QTL distribution
model I and population size 500; (C)
QTL distribution model II and popula-
tion size 200; (D) QTL distribution
model II and population size 500; (E)
QTL distribution model III and popula-
tion size 200; (F) QTL distribution
model III and population size 500.
The confidence interval for each prede-
fined QTL was set at 15 cM, and the
LOD threshold was 3.0. The last bar in
each section represents the false discov-
ery rate (FDR).
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LOD profile (Figure 4C). The last five chromosomes do
not have any QTL and have LOD scores close to 0. The
estimated positions were at 21, 54, 26, 55, 24, and 55 cM,
corresponding to the true positions 25, 55, 25, 55, 25, and
55 cM on the first three chromosomes. Some bias in
estimated effects was observed (Table 5), especially the
dominance effect of QTL2. Similar results from Figure 4,
E and F, can be observed for QTL distribution model III.

QTL affecting plant height in rice: The plant height
of rice variety PA64s, a carrier of one major dwarfing
gene, is 74.4 cm, while that of Nipponbare is 98.3 cm
(Figure 3D). The distribution of plant height in their F2

populations is similar to those in Figure 3, A–C. There
are a total of 24,660 (i.e., 180 3 137) marker points in
the F2 population, 5131 belonging to the PA64s marker
type, 6175 to the Nipponbare marker type, and 11,114

Figure 2.—Power analysis of every marker interval. (A) QTL distribution model I and population size 200; (B) QTL distribution
model I and population size 500; (C) QTL distribution model II and population size 200; (D) QTL distribution model II and pop-
ulation size 500; (E) QTL distribution model III and population size 200; (F) QTL distribution model III and population size 500. The
LODthresholdwas setat3.0.Powerswerepresent forallmarker intervals ineightchromosomes inAandB,but formarker intervalson
the first four chromosomes in C–F.
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to the F1 marker type. A total of 2240 marker points were
missing, representing 9.08% of total marker points.
Segregation distortions were observed for a few markers
as well. LOD scores, along with estimated additive and
dominance effects along the rice genome, are shown in
Figure 4, G and H. Obviously, the LOD profile in Figure
4G is more complicated than those in Figure 4, A, C, and
E, indicating the genetic model with real data may be
more complicated than those used in simulation. The
other reasons for the rugged LOD profile may be the
large amount of missing data and segregation distortions.

Under the LOD threshold of 3.0, eight QTL affecting
plant height in the F2 population were identified: two
each on chromosomes 1 and 3, one on chromosome 4,
and three on chromosome 7 (Table 5). Locus qPH1-2, a
major QTL explaining �30% of the phenotypic varia-
tion, has been detected by other methods (Yeet al. 2005).
The PA64s allele at qPH1-2 can reduce plant height by
�10 cm, and the dominance effect is relatively small.

Few F2 individuals are shorter than PA64s (Figure 3D),
indicating most, if not all, reduced-height alleles are

harbored by PA64s. However, many F2 individual plants
are taller than the taller parent Nipponbare (Figure 3D),
which may indicate the presence of overdominance.
Five QTL have negative additive effects (Table 5),
indicating the reduced-height alleles at these loci are
also from PA64s. Overdominance effects were observed
for qPH1-1, PH3-1, qPH7-1, qPH7-2, and qPH7-3, which
explains the large number of F2 individuals that are
taller than Nipponbare. For qPH1-1 and qPH7-1, the
additive effects were close to 0, indicating that these loci
will be less likely to be detected in other populations,
such as recombination inbred lines, where heterozygos-
ity is not present. So it is not unusual that different QTL
are detected even when using the populations derived
from the same parents.

DISCUSSION

Properties of the proposed inclusive linear model:
In an F2 population, all three genotypes at a locus are

TABLE 4

Estimated QTL location and additive and dominance effects from 100 simulations for QTL distribution model II

Population size Estimation Method QTL1 QTL2 QTL3 QTL4 QTL5 QTL6

200 LOD score CIM 6.20 5.66 7.76 7.41 8.45 8.71
(2.14) (2.26) (3.80) (3.82) (3.55) (4.07)

ICIM 8.90 5.92 12.72 11.06 15.17 15.71
(3.18) (2.52) (5.64) (4.75) (6.25) (5.96)

Position (cM) CIM 25.95 54.42 25.01 54.99 24.42 55.34
(3.49) (3.62) (3.45) (3.32) (3.25) (3.44)

ICIM 25.95 54.60 24.69 55.15 24.70 55.03
(3.92) (3.42) (3.39) (3.71) (3.31) (3.05)

Additive effect CIM 1.02 0.37 1.21 1.18 1.12 1.17
(0.20) (0.43) (0.30) (0.31) (0.30) (0.35)

ICIM 0.96 0.05 1.03 0.94 0.93 0.97
(0.18) (0.18) (0.37) (0.33) (0.40) (0.42)

Dominance effect CIM 0.44 1.20 0.65 �0.67 0.99 �0.96
(0.31) (0.25) (0.34) (0.26) (0.30) (0.32)

ICIM 0.05 1.13 0.72 �0.73 1.28 �1.29
(0.33) (0.20) (0.41) (0.39) (0.41) (0.42)

500 LOD score CIM 13.19 8.64 15.11 13.93 19.63 18.71
(4.35) (3.97) (7.12) (6.72) (8.16) (7.78)

ICIM 18.74 9.59 26.09 25.81 33.90 34.46
(5.85) (3.95) (7.13) (7.12) (9.42) (7.54)

Position (cM) CIM 25.31 54.30 24.81 55.31 25.08 54.67
(2.53) (2.75) (2.73) (2.28) (3.14) (3.02)

ICIM 24.69 54.67 24.66 55.24 25.10 54.80
(2.63) (2.54) (2.20) (2.42) (1.32) (1.56)

Additive effect CIM 0.96 0.24 1.12 1.07 1.13 1.13
(0.15) (0.32) (0.24) (0.23) (0.29) (0.26)

ICIM 0.96 0.04 0.99 0.98 0.95 0.98
(0.16) (0.10) (0.16) (0.20) (0.20) (0.19)

Dominance effect CIM 0.39 1.01 0.61 �0.64 0.94 �0.90
(0.17) (0.18) (0.19) (0.20) (0.24) (0.21)

ICIM 0.05 0.98 0.82 �0.87 1.38 �1.38
(0.14) (0.21) (0.32) (0.26) (0.33) (0.25)

The numbers in parentheses are the standard errors.
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represented, which allows the estimation of additive
effects and dominance deviations for individual QTL
(Paterson et al. 1991). At the same time, the genetic
analysis can be very complicated, as more genetic
parameters have to be considered simultaneously. In
this study, we proposed an inclusive linear model where
the included marker variables can completely explain
the additive and dominance effects of QTL. Model (10),
built on solid genetic and statistical theories, is the
theoretical basis for QTL mapping in F2 populations. It
has the properties similar to those reported by Zeng

(1994) for CIM, which are summarized as follows.
Property 1: The QTL additive effect causes marker

additive effects, while the QTL dominance effect causes
marker dominance effects, as well as additive-by-additive
and dominance-by-dominance interactions between the
two flanking markers. By including two multiplication
variables between flanking markers, the additive and
dominance effects of one QTL can be completely ab-
sorbed. This property comes from Equations 6 and 7.

Property 2: Assuming the additivity of QTL effects on a
phenotypic trait, i.e., model (9), the expectation of the
main marker effect in model (10), i.e., l or r, depends
only on those QTL located on two intervals where the
current marker is involved. The expectation of marker
interaction in model (10), i.e., ll or rr, depends only on
the QTL located in the interval flanked by the two
markers. This property can be seen from the deriving
process of Equation 10. Thereby, under the condition of
isolated QTL (Whittaker et al. 1996), the six coefficients
of the jth marker interval, i.e., lj , lj11, rj , rj11, llj ;j11,
and rrj ;j11, contain and contain only the effect and
location information of the QTL located in the interval.

Property 3: Under the condition of isolated QTL,
adjusted phenotypic values by Equation 11 retain the

effect and location information of the QTL located in
the current interval; at the same time, QTL in other
intervals and chromosomes have been controlled.
Therefore, conditioning on both linked and unlinked
markers in the second step of interval mapping reduces
the sampling variance of the test statistic by controlling
the residual genetic variation, thus increasing the power
of QTL mapping.

Marker coefficients are biased in the first step of
model selection using stepwise regression: In the QTL
and marker distribution model used in our simulation
study, there were a total of 464 variables included in
model (10), i.e., x1, x2, � � � , x120, y1, y2, � � � , y120, x1 3 x2, � � � ,
x119 3 x120, y1 3 y2,� � � , and y119 3 y120, where the mul-
tiplication of the last marker in a chromosome with the
first marker in the next chromosome was excluded.
When the largest P-value for entering variables and the
smallest P-value for removing variables were set at 0.01
and 0.02, only a few of the six variables were picked up by
stepwise regression. For QTL1 in distribution model I,
only variable x4 was retained and its coefficient was
estimated as 0.841. Without the second step of interval
mapping, one could conclude that one additive QTL
was located at 30 cM. For QTL1 in distribution models II
and III, only variable x3 was retained and its coefficient
was estimated as 0.648 and 0.713, respectively. Without
the second step of interval mapping, one could con-
clude that one additive QTL was located at 20 cM.
However, the second step of interval mapping found the
largest LOD score was achieved at 21 cM for model II
and at 25 cM for model III (Table 5), which are closer or
the same to the true QTL position. For QTL5 and
QTL6, the interaction coefficients were more important
(Table 2). Under distribution model II, the four
variables for QTL6 retained by stepwise regression were

Figure 3.—Phenotypic distributions of the
three simulated and one actual F2 populations.
(A) QTL distribution model I and population
size 500; (B) QTL distribution model II and pop-
ulation size 500; (C) QTL distribution model III
and population size 500; (D) rice F2 population
derived from PA64s and Nipponbare and popula-
tion size 180.
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Figure 4.—Mapping results from ICIM for the three simulated and one actual F2 populations. (A and B) The first simulated F2

population from QTLdistributionmodel Iandpopulationsize500; (CandD)thefirst simulated F2 population fromQTLdistribution
model IIandpopulationsize500; (EandF) thefirst simulated F2 population fromQTLdistributionmodel III andpopulationsize500;
(G and H) rice F2 population derived from PA64s and Nipponbare, population size 180. The scanning step was 1 cM.
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x36, x37, x36 3 x37, and y36 3 y37. But this does not mean
there were two interacting QTL located at 50 and 60 cM
on chromosome 3. Rather, the dominance effect of
QTL6 caused interactions between the 36th and 37th
markers.

Model (10) is a linear regression model, and the choice
of variables is a typical model selection issue (Miller

1990). Treating QTL mapping as a model selection
problem and the use of model selection criteria to
identify the best model have been intensely investigated
by many authors (Piepho and Gauch 2001; Broman

and Speed 2002; Bogdan et al. 2004; Baierl et al. 2006).
A number of statistical methods are available to search
through the space of models, and various criteria can be
used to select the best model (Miller 1990; Piepho and
Gauch 2001). However, there is no general conclusion
in statistics as to which model selection method is best
(Miller 1990). In the first step of ICIM, we use stepwise
regression for model selection. However, we do not

exclude the possibility that other model selection
methods may achieve similar or even better perfor-
mance than the stepwise regression used in ICIM. If
better model selection methods than stepwise regres-
sion are identified, they should be readily used in the
first step of ICIM.

The second step of interval mapping is necessary in
ICIM: At first glance, the result of ICIM seems to depend
on the identification of an appropriate regression model
in the first step. However, the two-step approach we
adopted in ICIM has the advantage that the best
regression model in the first step does not need to be
very close to the true model. Ideally, the second step of
interval mapping can correct the imprecision of co-
efficient estimation in the first step. For all three QTL
distribution models, a large bias has been observed
between the true marker effects in Table 3 and the
estimated marker effects. In addition, some nonrelevant
variables were also selected by stepwise regression. Some

TABLE 5

Estimated QTL location, additive effect, dominance effect, and variation from ICIM in three simulated and one actual
F2 populations

QTL
Flanking markers with positions

(cM) in parentheses
Position

(cM)
LOD
score

Estimated
additive effect

Estimated
dominance effect

PVE
(%)

QTL distribution model I
QTL1 M3 (20), M4 (30) 28 16.52 0.88 �0.11 6.67
QTL2 M21 (50), M22 (60) 53 7.67 0.03 0.85 3.27
QTL3 M33 (20), M34 (30) 24 25.11 0.86 1.08 11.28
QTL4 M51 (50), M52 (60) 57 35.46 0.74 �1.58 16.43
QTL5 M63 (20), M64 (30) 26 37.12 1.05 1.38 16.74
QTL6 M81 (50), M82 (60) 55 28.44 0.84 �1.22 13.16

QTL distribution model II
QTL1 M3 (20), M4 (30) 21 9.67 0.66 �0.16 2.82
QTL2 M6 (50), M7 (60) 54 23.53 0.06 1.60 8.43
QTL3 M18 (20), M19 (30) 26 40.49 1.18 1.30 14.35
QTL4 M21 (50), M22 (60) 55 24.00 0.80 �1.02 8.03
QTL5 M33 (20), M34 (30) 24 35.93 1.02 1.35 12.82
QTL6 M36 (50), M37 (60) 55 52.76 1.13 �1.85 20.07

QTL distribution model III
QTL1 M3 (20), M4 (30) 25 11.33 0.76 0.04 4.04
QTL4 M6 (50), M7 (60) 53 34.54 1.22 �0.85 13.59
QTL5 M18 (20), M19 (30) 23 31.26 0.69 1.70 13.38
QTL2 M21 (50), M22 (60) 56 11.67 0.09 1.17 4.90
QTL3 M33 (20), M34 (30) 25 28.89 1.10 0.87 11.84
QTL6 M36 (50), M37 (60) 55 26.72 0.91 �1.26 11.04

Plant height (cm) in rice
qPH1-1 RM246 (94), RP2 (110) 103 3.32 0.18 �5.32 5.28
qPH1-2 RP82 (164), RP3 (188) 181 14.87 �9.25 1.97 29.99
qPH3-1 RM523 (17), RM251 (57) 29 5.24 2.66 6.20 11.07
qPH3-2 RP242 (58), RM520 (72) 67 4.96 �3.90 2.89 7.80
qPH4 RM349 (46), RP68 (56) 49 3.68 �3.05 �3.10 5.56
qPH7-1 RM82 (0), RM180 (23) 3 3.98 0.11 5.58 5.50
qPH7-2 RM180 (23), RM119 (75) 55 3.26 �3.36 5.12 9.20
qPH7-3 RM118 (75), RM346 (132) 95 3.30 �3.95 5.72 11.75

PVE, percentage of variance explained.
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were close to the markers flanking QTL, but some were
not. For example, the marker for x53 in model I was close
to the markers flanking QTL4, but the marker for y97

and the markers for x104 3 x105 were on the seventh
chromosome where no QTL was located. However, all
biases were apparently corrected to some extent by the
second step of interval mapping (Figure 4, A–F; Table 5),
which indicated the necessity of fine tuning using
interval mapping in the second step of ICIM.

In ICIM, the inference of QTL is not built on the
estimated coefficients in model (10). Actually, model
(10) is used to control background genetic variation in
the second step of interval mapping. In this sense, the
predictability of model (10) for the background genetic
effects that can be used to adjust the phenotypic per-
formance in Equation 11 becomes more important. In
the regression theory, it is generally agreed that collin-
earity between regression variables in model (10) can
seriously bias the estimation of their effects, but this
undesirable bias does not extend to the model’s fit
(Miller 1990; Harrell 2001). In other words, collin-
earity does not affect predictions made on the same data
set used to estimate the model parameters. This may
have explained the advantage of using the two-step
strategy in ICIM.
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