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ABSTRACT

Composite interval mapping (CIM) is the most commonly used method for mapping quantitative trait loci
(QTL) with populations derived from biparental crosses. However, the algorithm implemented in the
popular QTL Cartographer software may not completely ensure all its advantageous properties. In addition,
different background marker selection methods may give very different mapping results, and the nature of
the preferred method is not clear. A modified algorithm called inclusive composite interval mapping (ICIM)
is proposed in this article. In ICIM, marker selection is conducted only once through stepwise regression
by considering all marker information simultaneously, and the phenotypic values are then adjusted by
all markers retained in the regression equation except the two markers flanking the current mapping
interval. The adjusted phenotypic values are finally used in interval mapping (IM). The modified algorithm
has a simpler form than that used in CIM, but a faster convergence speed. ICIM retains all advantages of
CIM over IM and avoids the possible increase of sampling variance and the complicated background marker
selection process in CIM. Extensive simulations using two genomes and various genetic models indicated
that ICIM has increased detection power, a reduced false detection rate, and less biased estimates of QTL
effects.

THE rapid increase in availability of fine-scale
genetic marker maps has led to the intensive

use of QTL mapping in the genetic study of quan-
titative traits (Falconer and Mackay 1996; Doerge

et al. 1997; Lynch and Walsh 1998; Kearsey 2002;
Steinmetz et al. 2002; Wu and Lin 2006). A number of
statistical methods have been developed for QTL detec-
tion and effect estimation (Lander and Botstein 1989;
Haley and Knott 1992; Jansen 1994; Wright and
Mowers 1994; Zeng 1994; Satagopan et al. 1996;
Whittaker et al. 1996; Piepho and Gauch 2001; Sen

and Churchill 2001; Broman and Speed 2002; van

den Oord and Sullivan 2003; Xu 2003; Bogdan et al.
2004).

From a statistical perspective, methods for QTL map-
ping are based on three broad classes: regression
(Haley and Knott 1992; Whittaker et al. 1996),
maximum-likelihood (Doerge et al. 1997), and Bayes-
ian models (Sillanpää and Corander 2002). The
simplest single-marker analysis identifies QTL on the
basis of the difference between the mean phenotypes of

different marker groups, but cannot separate the esti-
mates of recombination fraction and QTL effect (Soller

et al. 1976; Doerge et al. 1997). Interval mapping (IM) is
based on maximum-likelihood parameter estimation
and provides a likelihood-ratio test for QTL position
(Lander and Botstein 1989). Regression interval map-
ping was proposed to approximate maximum-likelihood
interval mapping to save computation time at one or
multiple genomic positions (Haley and Knott 1992;
Martinez and Curnow 1992). The major disadvantage
of IM is that the estimates of locations and effects of QTL
may be biased when QTL are linked (Haley and Knott

1992; Martinez and Curnow 1992; Zeng 1994). Com-
posite interval mapping (CIM) ( Jansen 1994; Zeng

1994) combines IM with multiple-marker regression anal-
ysis, which controls the effects of QTL on other intervals
or chromosomes onto the QTL that is being tested and
thus increases the precision of QTL detection. More re-
cently, the use of Bayesian models has been widely ex-
plored for QTL mapping (Satagopan et al. 1996; Uimari

and Hoeschele 1997; Sen and Churchill 2001; Xu

2003; Bogdan et al. 2004; Wang et al. 2005a). However,
methods based on Bayesian models have not been widely
used in practice, partially due to the difficulty of choosing
prior distributions, complexity of computation, and lack
of user-friendly software.
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Due to the accessibility of the freely available software
QTL Cartographer (Wang et al. 2005b) CIM is now the
most commonly used method for QTL mapping with
populations derived from biparental crosses. However,
in Zeng’s algorithm, QTL effect at the current testing
position and regression coefficients of the marker vari-
ables used to control genetic background were estimated
simultaneously in an expectation and conditional max-
imization (ECM) algorithm. Thus, the same marker
variable may have different coefficient estimates as the
testing position changes along the chromosomes. The
algorithm used in CIM cannot completely ensure that
the effect of QTL at the current testing interval is not
absorbed by the background marker variables and may
result in biased estimation of the QTL effect (see Table 4
and Figure 1 in Zeng 1994).

In this article, we propose a modified algorithm to
render CIM more inclusive of all marker data [inclusive
composite interval mapping (ICIM)] and then compare
ICIM with CIM through extensive simulations.

MATERIALS AND METHODS

The linear regression model and its properties in QTL
mapping: For simplicity, it is supposed that two inbred parents
P1 and P2 differ in m QTL, being distributed in m intervals
flanked by m 1 1 markers. The parental QTL genotype is as-
sumed to be Q1Q1Q2Q2 . . . QmQm for P1 and q1q1q2q2 . . . qmqm

for P2. We consider a backcross population where P1 is the
recurrent parent. For an individual in a backcross population
X ¼ (x1, x2, . . . , xm, xm11) represents marker variables that are
1 and�1, standing for the two marker types (homozygote and
heterozygote), respectively, and G¼ (g1, g2, . . . , gm) represents
the QTL variables that are 1 and�1, standing for the two QTL
types (homozygote and heterozygote), respectively. Additive
effects of QTL are represented by a1, a2, . . . , and am. Under the
assumption of additivity of QTL effects, the genetic value G of
an individual under an additive genetic model can be written
in the following form:

G ¼
Xm

j¼1

aj gj ð1Þ

(Whittaker et al. 1996).
The expectation of QTL genotype gj is dependent on the

position of the jth QTL on the chromosomal interval flanked
by the jth and ( j 1 1)th markers and the length of the interval
(Zeng 1993; Wright and Mowers 1994; Whittaker et al.
1996); i.e.,

Eðgj jXÞ ¼ lj xj 1 rj xj11; ð2Þ

where lj and rj are functions of the three recombination
fractions between the jth marker and jth QTL, between the jth
QTL and ( j 1 1)th marker, and between the jth and ( j 1 1)th
markers. Therefore, the expectation of the genotypic value G
conditional on the known marker types can be written as a
linear function of marker variables; i.e.,

EðG jXÞ ¼
Xm

j¼1

ajðlj xj 1 rj xj11Þ ¼
Xm11

j¼1

bj xj ; ð3Þ

where b1 ¼ l1a1, bj ¼ rj�1aj�1 1 lj aj ( j ¼ 2, . . . , m), and
bm11 ¼ rmam . The coefficient of the jth marker is affected by
QTL only on intervals ( j � 1, j) and ( j, j 1 1). If there are no
QTL in the neighboring intervals of the current interval ( j, j 1
1), corresponding to the assumption of isolated QTL accord-
ing to Whittaker et al. (1996), the two coefficients bj and bj11

contain all the position and additive effect information of the
QTL in the interval ( j, j 1 1), which provides the theoretical
basis for mapping additive QTL in CIM (Zeng 1994) and other
regression mapping methods (Wright and Mowers 1994;
Whittaker et al. 1996).

Suppose that we have a sample of n individuals from a back-
cross population with observations on a quantitative trait of
interest and m 1 1 ordered markers. The following linear
regression model based on Equation 3 can be used in mapping
additive QTL; i.e.,

yi ¼ b0 1
Xm11

j¼1

bj xij 1 ei ; ð4Þ

where yi is the trait value of the ith individual in the mapping
population; b0 is the overall mean of the model; xij is a dummy
variable for the genotype of the ith individual at the jth marker,
taking value 1 for homozygote of marker type and �1 for het-
erozygote; bj is the regression coefficient of the phenotype
on the jth marker conditional on all other markers; and ei

is the residual random error that is assumed to be normally
distributed.

According to Zeng (1994), the two major properties of CIM
were:

Property 1: In the multiple-regression analysis, assuming
additivity of QTL effects between loci (i.e., ignoring epista-
sis), the expected partial regression coefficient of the trait
on a marker depends only on those QTL that are located on
the interval bracketed by the two neighboring markers and
is unaffected by the effects of QTL located on other
intervals.

Property 2: Conditioning on unlinked markers in the multiple-
regression analysis will reduce the sampling variance of the
test statistic by controlling some residual genetic variation
and thus will increase the power of QTL mapping.

Both properties come from the regression properties of
regression model (4). In Zeng’s algorithm, both QTL effect
at the current testing interval and regression coefficients of
the background markers were estimated simultaneously by an
ECM algorithm. However, this algorithm may not completely
ensure the two properties.

A modified CIM algorithm: The basic idea behind the
modified algorithm is to use all marker information when
building model (4), so that properties 1 and 2 in Zeng (1993,
1994) can be completely guaranteed, and then the interval
mapping approach of Lander and Botstein (1989) is applied
on the adjusted phenotypic data. Considering that the
number of QTL is always much lower than the number of
markers, stepwise regression can be used to select the most
important marker variables and therefore select the sig-
nificant QTL. The coefficients of unselected markers through
stepwise regression are set to 0 in model (4). When scanning
for QTL along the chromosomes, the parameters in model
(4) are estimated only once. For a testing position in interval
(k, k 1 1), the observation values in model (4) can be adjusted
by

Dyi ¼ yi �
X

j 6¼k;k11

b̂j xij ; ð5Þ
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where b̂j is the estimate of bj in model (4). As shown in model
(3), the two estimates b̂k and b̂k11 contain all the position- and
additive-effect information of the QTL located on the current
interval (k, k 1 1) under the condition of no QTL in its
neighboring intervals and the condition of large samples.
Therefore, the use of Dyi in the subsequent interval mapping
does not lose any information of the QTL at the current
mapping interval, but the effects of QTL located on other
intervals and chromosomes are controlled through the in-
troduction of other coefficients in Equation 5. The adjusted
observation Dyi does not change until the testing position moves
into a new interval. Please note that the only assumption we
made here is that the QTL on the same linkage group or
chromosome are isolated by at least one empty interval
(isolated QTL according to Whittaker et al. 1996).

For a testing position in an interval, all individuals in the
backcross population can be classified into four groups on the
basis of the two flanking markers (Table 1). If there is one QTL
(with the two alleles denoted as Q and q) at the testing position,
individuals in all the four groups have QTL genotypes QQ or
Qq and hence follow a mixture distribution consisting of
components N ðm1;s

2Þ and N ðm2;s
2Þ (Table 1) (McLachlan

and Basford 1988). The distribution proportions in each
mixture distribution depend on the recombination frequen-
cies between QTL and the two flanking markers (Table 1). The
existence of QTL at the current mapping position can be
tested by the following hypotheses:

H0: m1 ¼ m2 vs: HA: m1 6¼ m2:

Supposing that all the n individuals have been sorted on the
basis of their marker types, the log-likelihood function under
the alternative hypothesis HA is

LA ¼
Xn1

i¼1

ln½p1f ðDyi ;m1;s
2Þ1ð1� p1Þf ðDyi ;m2;s

2Þ�

1
Xn11n2

i¼n111

ln½p2f ðDyi ;m1;s
2Þ1ð1� p2Þf ðDyi ;m2;s

2Þ�

1
Xn11n21n3

i¼n11n211

ln½ð1� p2Þf ðDyi ;m1;s
2Þ1p2f ðDyi ;m2;s

2Þ�

1
Xn

i¼n11n21n311

ln½ð1�p1Þf ðDyi ;m1;s
2Þ1p1f ðDyi ;m2;s

2Þ�;

ð6Þ

where p1and p2 are the proportions of individuals with QQ
genotype in group 1 and group 2 or the proportions of in-

dividuals with Qq genotype in group 4 and group 3, respec-
tively. f ðDyi ; m1;s

2Þ and f ðDyi ; m2;s
2Þ represent the probability

densities of the two normal distributions of N ðm1;s
2Þ and

N ðm2;s
2Þ, corresponding to the two QTL genotypes QQ and

Qq, respectively (Table 1).
The expectation and maximization (EM) algorithm

(Dempster et al. 1977; McLachlan and Basford 1988) is
used to estimate the two means and one variance in Equation
6. The initial values of the three unknown parameters can
be defined from groups 1 and 4 (Table 1) as

m
ð0Þ
1 ¼

1

n1

Xn1

i¼1

Dyi ; m
ð0Þ
2 ¼

1

n4

Xn

i¼n11n21n311

Dyi ;

and

s2ð0Þ ¼ 1

n1 1n4

Xn1

i¼1

ðDyi �m
ð0Þ
1 Þ2 1

Xn

i¼n11n21n311

ðDyi �m
ð0Þ
2 Þ2

" #
:

In the E-step, the posterior probabilities of an individual
being QQ at the QTL in groups 1–4 are

w
ð0Þ
i ¼

p1f ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ

p1f ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ1ð1� p1Þf ðDyi ;m

ð0Þ
2 ;s2ð0ÞÞ

;

i ¼ 1; . . . ;n1;

w
ð0Þ
i ¼

p2f ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ

p2f ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ1ð1� p2Þf ðDyi ;m

ð0Þ
2 ;s2ð0ÞÞ

;

i ¼ n1 11; . . . ;n1 1n2;

w
ð0Þ
i ¼

ð1�p2Þf ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ

ð1� p2Þf ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ1p2f ðDyi ;m

ð0Þ
2 ;s2ð0ÞÞ

;

i ¼ n1 1n2 11; . . . ;n1 1n2 1n3;

and

w
ð0Þ
i ¼

ð1�p1Þf ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ

ð1� p1Þf ðDyi ;m
ð0Þ
1 ;s2ð0ÞÞ1p1f ðDyi ;m

ð0Þ
2 ;s2ð0ÞÞ

;

i ¼ n1 1n2 1n3 11; . . . ;n;

respectively.
In the M-step, the three parameters were updated as

m
ð1Þ
1 ¼

Pn
i¼1 w

ð0Þ
i DyiPn

i¼1 w
ð0Þ
i

; m
ð1Þ
2 ¼

Pn
i¼1ð1�w

ð0Þ
i ÞDyiPn

i¼1ð1�w
ð0Þ
i Þ

;

TABLE 1

Marker types on the current mapping interval and their QTL distributions in a backcross population

Marker genotype Frequency of QTL genotype

Group Sample size Frequency j j 1 1 QQ Qq Distribution of Dyj

1 n1 p1 1 1 p1 1� p1 p1N ðm1;s
2Þ1 ð1� p1ÞN ðm2;s

2Þ
2 n2 p2 1 � p2 1� p2 p2N ðm1;s

2Þ1 ð1� p2ÞN ðm2;s
2Þ

3 n3 1� p2 � 1 1� p2 p2 ð1� p2ÞN ðm1;s
2Þ1 p2N ðm2;s

2Þ
4 n4 1� p1 � � 1� p1 p1 ð1� p1ÞN ðm1;s

2Þ1 p1N ðm2;s
2Þ

p1 ¼ ð1� rj ;qÞð1� rq;j11Þ=ð1� rj ;j11Þ and p2 ¼ ð1� rj ;qÞrq;j11=rj ;j11, where rj ;q , rq;j11, and rj ;j11 are the recombination frequencies
between marker j and the QTL, between the QTL and marker j 1 1, and between markers j and j 1 1, respectively. ‘‘1’’ denotes
homozygote for the marker genotype and ‘‘�’’ denotes heterozygote. N ðm1;s

2Þ and N ðm2;s
2Þ represent the distributions for the

two QTL genotypes QQ and Qq, respectively.
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and

s2ð1Þ ¼ 1

n

Xn

i¼1

½wð0Þi ðDyi �m
ð1Þ
1 Þ2 1ð1�w

ð0Þ
i ÞðDyi �m

ð1Þ
2 Þ2�:

The EM algorithm continues until the difference in likeli-
hood function between two consecutive iterations reaches a
preassigned precision criterion. The maximum-likelihood
estimates thus obtained are represented as m̂1, m̂2, and ŝ2,
from which the additive effect of the putative QTL can be
estimated.

Under the null hypothesis, H0, all Dyi defined by Equation 5
follow a normal distribution denoted as N ðm0;s

2
0Þ. The mean

and variance of this distribution can be estimated as

m0 ¼
1

n

Xn

i¼1

Dyi and s2
0 ¼

1

n

Xn

i¼1

ðDyi �m0Þ2:

Thus, the log-likelihood function under the null hypothesis
H0 is

L0 ¼
Xn

i¼1

ln f ðDyi ;m0;s
2
0Þ:

The LOD score at the testing position can be calculated from
the log-likelihoods under the two hypotheses.

Genetic models used in simulation studies: Two hypothet-
ical genomes were used in simulation. One genome consisted
of six chromosomes, each of 150 cM in length and with 16
evenly distributed markers. Ten QTL (represented by QZ1–
QZ10; Table 2) were assumed to contribute to the trait of in-
terest. Three QTL were located on each of the first three
chromosomes and one QTL on the fourth chromosome.

There was no QTL on chromosomes 5 and 6. The locations
and effects of these QTL were similar to the scenario used by
Zeng (1994). Both coupling and repulsive linkages and un-
equal QTL effects were considered in this scenario and there-
fore should have a wide applicability. To investigate the effect
of epistasis on mapping additive QTL, two genetic models
were simulated for this genome, one consisting of only addi-
tive genetic effects and the other consisting of both additive
effects and digenic interactions (Table 2). The additive effects
in the epistasis model were the same as those in the additive
model, and the interaction effect was drawn from a Gamma
distribution implemented by QTL Cartographer (Wang et al.
2005b). Under the QTL distribution in Table 2, the theoretical
additive variance was 4.0, and the theoretical epistasis variance
was 2.0 (estimated by QTL Cartographer). Two heritability (in
the broad sense) levels were considered: H¼ 0.8 (representing
high heritability traits) and H ¼ 0.5 (representing medium
heritability traits). One hundred backcross populations of 200
individuals were simulated for each model by heritability
combination using QTL Cartographer.

The other genome consisted of four chromosomes, each
with 100 cM in length and 21 markers evenly distributed. Eight
large-effect QTL (represented by QY1–QY8) and 16 small-
effect QTL contributed to the expression of a quantitative trait
of interest (for details see Table 1 in Yi et al. 2003). To compare
CIM and ICIM with the Bayesian mapping methods of Yi

et al. (2003), 100 backcross populations each of 300 individuals
were generated, and the residual variance s2

e was adjusted to
1. The population size and the residual variance were the same
as those used in Yi et al. (2003).

For CIM, we applied different background marker selection
methods available in QTL Cartographer. The model using
stepwise regression to select control markers was the best in
terms of the estimates of QTL positions and effects, so other

TABLE 2

Chromosomal position and additive and additive-by-additive epistatic effects of 10 QTL

Chromosome

1 1 1 2 2 2 3 3 3 4
Position (cM): 16 48 108 3 43 77 33 68 129 26

QTL symbol: QZ1 QZ2 QZ3 QZ4 QZ5 QZ6 QZ7 QZ8 QZ9 QZ10

QZ1 0.54
QZ2 0.16 0.95
QZ3 0.45 0.17 0.73
QZ4 0.92 1.29
QZ5 0.61 �1.57
QZL6 �1.16 0.46 0.21 �1.61
QZ7 0.17 1.30 �0.59
QZ8 1.18 2.91 0.36 2.05
QZ9 0.30 �1.12 �0.30 �1.72 1.12
QZ10 �0.44 �0.96 2.96 0.94
PVE of additive genetic model

H ¼ 0.8 1.46 4.51 2.66 8.32 12.30 12.96 1.74 21.01 6.27 4.42
H ¼ 0.5 0.91 2.82 1.67 5.20 7.70 8.10 1.09 13.13 3.92 2.76

PVE of additive and epistasis genetic model
H ¼ 0.8 0.97 3.01 1.78 5.55 8.22 8.64 1.16 14.01 4.18 2.95
H ¼ 0.5 0.61 1.88 1.11 3.47 5.14 5.40 0.73 8.76 2.61 1.84

The additive variance (VA) was 4.0, and the interaction variance (VI) was half of the additive variance. The interaction effect was
drawn from a Gamma distribution Gða ¼ 0:3Þ. The error variance (Ve) was calculated by Ve ¼ ðVA 1 VIÞð1�H Þ=H, where H is the
heritability in the broad sense. When interaction was not included, the error variances were 1.0 and 4.0 for H ¼ 0.8 and H ¼ 0.5,
respectively. When interaction was included, the error variances were 1.5 and 6.0 for H ¼ 0.8 and H ¼ 0.5, respectively. PVE,
percentage of variance explained by individual QTL.
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models for CIM were not considered in power analysis. For
ICIM, the stepwise regression was used to select markers and
estimate the parameters in model (4), in which the largest
P-value for entering variables was set at 0.05, and the smallest
P-value for removing variables was 0.10. CIM was implemented
by QTL Cartographer, and IM (where applicable) and ICIM
were implemented by an in-house computer program called
IciMapping (available from http://www.isbreeding.net/software.
html). On the basis of a permutation test, a LOD threshold of
2.5 was used to declare the presence of a QTL.

Power calculation and position and effect estimation: QTL
mapping based on an interval test is not a point estimation,
which makes it complicated to calculate power through sim-
ulation. Especially, when QTL are closely linked, it is difficult
to determine which putative QTL the LOD peak belongs to.
We adopted two methodologies to calculate power. First, a
power was calculated for each interval defined by markers.
This power calculation allows monitoring of QTL locations if
not on the predefined intervals. Second, each predefined
QTL was assigned to a 10-cM interval centered at the true QTL
location, and then the power was estimated for the so-defined
confidence interval. QTL identified in other intervals were
viewed as false positives.

We also adopted two methodologies to calculate the mean
QTL position and effect (Zeng 1994). One was calculated
from all peaks in the confidence interval across 100 runs, and
the other from the peaks having a LOD score over the pre-
defined threshold of 2.5.

SIMULATION RESULTS

LOD score distribution of ICIM: Permutation tests
(Churchill and Doerge 1994) were conducted to find
the LOD score distributions of ICIM under the null
hypothesis. These distributions were different for dif-
ferent genetic models and heritability levels in genome
1 (Table 3). For a population size of 200, the probabil-
ities that the LOD score was .2.5 were 0.0630, 0.0311,
0.0462, and 0.0204 (calculated from Table 3) for the
four combinations of two genetic models and two herit-
ability levels, respectively. For a population size of 300,
these probabilities were 0.1393, 0.0899, 0.0932, and

0.0474, respectively. Results in Table 3 indicate that
different LOD thresholds should be applied for differ-
ent data sets to ensure the same level of false-positive
rates. For simplicity, we applied the LOD threshold of
2.5 in the simulation study. This threshold value may not
result in a false discovery rate ,0.05, but will have little
effect on the comparison of different mapping meth-
ods. Moreover, we compared ICIM with CIM not only in
terms of mapping power but also in terms of the number
of false positives.

Power analysis of CIM and ICIM from genome 1: On
the average LOD profiles of ICIM displayed clear peaks
around most of the predefined QTL, but this was not
the case for CIM especially on chromosomes where
there were multiple QTL (Figure 1). The three QTL on
chromosome 2, i.e., QZ4, QZ5, and QZ6 (explaining
8.32, 12.30, and 12.96% of the phenotypic variance un-
der the additive genetic model and H¼ 0.8, respectively;
Table 2), had similar effects. QZ4 was linked with QZ5
in repulsive phase, and QZ5 was linked with QZ6 in
coupling phase. Three clear peaks were observed on the
average LOD profiles of ICIM, but it was hard to dis-
tinguish QZ5 and QZ6 on the average LOD profiles
of CIM (Figure 1). The average LOD profiles were very
low on chromosomes 5 and 6 on which there were
no QTL, indicating that both CIM and ICIM are less
likely to locate a QTL on one chromosome to other
chromosomes.

When powers were calculated for all marker intervals
along the six chromosomes, the probability that QTL
were mapped onto the two devoid chromosomes (i.e., 5
and 6) was rather low for both CIM and ICIM (Figure 2),
as has been seen from the average LOD profiles in Fig-
ure 1. The advantage of ICIM over CIM was not sig-
nificant for chromosome 3 (Figure 2), for which QZ7
has a very small effect (explaining 1.74% of phenotypic
variance under the additive model and H ¼ 0.8; Table
2), and QZ8 and QZ9 are far apart (61 cM apart on

TABLE 3

Accumulated probability of LOD score, P(LOD , x), from a permutation test

Population size 200 Population size 300

ADD ADD 1 EPI ADD ADD 1 EPI

x H ¼ 0.8 H ¼ 0.5 H ¼ 0.8 H ¼ 0.5 H ¼ 0.8 H ¼ 0.5 H ¼ 0.8 H ¼ 0.5

2.0 0.9018 0.9434 0.9255 0.9610 0.8250 0.8773 0.8771 0.9214
2.5 0.9370 0.9689 0.9538 0.9796 0.8607 0.9101 0.9068 0.9526
3.0 0.9609 0.9823 0.9724 0.9893 0.8891 0.9351 0.9261 0.9720
3.5 0.9757 0.9900 0.9836 0.9943 0.9131 0.9543 0.9401 0.9837
4.0 0.9857 0.9936 0.9902 0.9973 0.9328 0.9691 0.9519 0.9913
4.5 0.9921 0.9966 0.9950 0.9987 0.9477 0.9800 0.9607 0.9953
5.0 0.9955 0.9979 0.9975 0.9993 0.9597 0.9875 0.9685 0.9977
5.5 0.9973 0.9991 0.9988 0.9997 0.9696 0.9921 0.9743 0.9986
6.0 0.9987 0.9996 0.9994 0.9999 0.9772 0.9950 0.9791 0.9993

ADD, additive genetic model as defined in Table 2; ADD 1 EPI, additive and epistasis genetic model as defined in Table 2;
H, heritability in the broad sense.
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chromosome 3; Table 2). The advantage was not
significant for chromosome 4 either, on which there
was only one QTL (Figure 2). However, the advantage of
ICIM was significant for chromosome 2 for all genetic
models and heritability levels, on which there were three
QTL of similar effects (QZ4, QZ5, and QZ6), and the
distances between QZ4 and QZ5 and QZ5 and QZ6 were
40 and 34 cM, respectively (Table 2). ICIM had higher
powers to map QZ4 and QZ5 in the right intervals and
lower probability to assign them to incorrect intervals
than CIM (Figures 2 and 3).

The advantage of ICIM over CIM was much clearer
when power was calculated on the basis of an interval of
10 cM centered on the predefined QTL (Figure 3). For
QZ1, CIM had higher powers than ICIM for the additive
genetic model under heritability 0.5 and the additive
and epistasis model under heritability 0.8. For QZ2 and
QZ6, CIM also had higher powers in most cases. For
QZ8, the powers of CIM and ICIM for the additive
genetic model under heritability 0.5 and the additive
and epistasis model under heritability 0.5 were the
same, and for QZ9 those powers for the additive genetic
model under heritability 0.5 were the same. But for all
other cases, ICIM had higher powers. On average, CIM

identified 6.11, 3.63, 3.97, and 2.35 QTL for the two
genetic models and two heritability levels in each run,
respectively, while ICIM identified 7.52, 4.40, 4.84, and
2.72 QTL, respectively, and all of them were higher than
those observed from CIM (Figure 4). QTL identified in
intervals other than the defined intervals were viewed as
false positives. On average the false QTL numbers in
each run were 6.58, 4.82, 4.85, and 3.36 for CIM, but
3.67, 3.71, 3.31, and 2.73 for ICIM, respectively (Figure
4). Thus, the proportions of true to false positives were
0.93, 0.75, 0.82, and 0.70 for CIM, but 2.05, 1.19, 1.46,
and 1.00 for ICIM for the two genetic models and two
heritability levels, respectively. As shown in Figure 2,
many false positives were located in the neighboring
intervals on the chromosomes, and the proportion of
true QTL vs. false positives was generally dependent on
the width of confidence intervals.

Lower heritability and the inclusion of epistasis re-
duced the power for mapping additive QTL using CIM
and ICIM (Figures 1–4). The mapping power under the
additive and epistasis model and heritability 0.8 was
similar to that under the additive genetic model and
heritability 0.5. When mapping was conducted assum-
ing additivity of QTL, the epistatic effect should enter

Figure 1.—Average LOD profiles of CIM and ICIM across 100 simulation runs for different genetic models and heritability
levels under genome 1. Arrow size and direction represent the approximate effect size and direction of the pointed QTL, respec-
tively. (A–D) Mean LOD profile across 100 runs: (A) additive genetic model, H ¼ 0.8; (B) additive genetic model, H ¼ 0.5; (C)
additive and epistasis model, H ¼ 0.8; and (D) additive and epistasis model, H ¼ 0.5.
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into the sampling error. The effect of epistasis on
additive QTL mapping was equivalent to additional
random errors on phenotypic data. For the additive and
epistasis genetic model under heritability 0.8 (Table 2),
the proportion of additive variance to the phenotypic
variance was 4/(4 1 2 1 1.5) � 53%, which was similar
to the additive genetic model of heritability 0.5 (Table
2). This suggests that CIM and ICIM are still effective for
locating the QTL and estimating their additive effects
when epistasis is present if the heritability in the narrow
sense is not too low.

Estimation of QTL positions and effects from
genome 1: The estimates of QTL positions can be on
the left or right of the true position. The deviation of the
average position estimates across the 100 simulations

ranged from �2.23 to 2.40 cM (Table 4). There is a
tendency that QTL were mapped toward to their closest
markers. In other words, a QTL closer to its left flanking
marker had a negative deviation (i.e., QZ4 at 3 cM and
QZ5 at 43 cM on chromosome 2 and QZ7 at 33 cM on
chromosome 3), and a QTL closer to its right flanking
marker had a positive deviation (i.e., QZ2 at 48 cM and
QZ3 at 108 cM on chromosome 1, QZ6 at 77 cM on
chromosome 2, and QZ8 at 68 cM and QZ9 at 129 cM on
chromosome 3). This is understandable by looking into
the two coefficients in model (2). If a QTL is located in
the middle of a flanking interval, its effect will be evenly
absorbed by the two flanking markers. Otherwise, the
marker closer to the QTL will absorb most of the QTL
variation and is more likely retained through stepwise

Figure 2.—Power of QTL detection of CIM and ICIM for two genetic models and heritability levels under genome 1. Power was
calculated as the proportion of runs that detected the presence of QTL for each of the 90 intervals defined by the 96 markers
evenly distributed on six chromosomes. Arrow size and direction represent the approximate effect size and direction of the
pointed QTL, respectively. (A) Additive genetic model, H ¼ 0.8. (B) Additive genetic model, H ¼ 0.5. (C) Additive and epistasis
model, H ¼ 0.8. (D) Additive and epistasis model, H ¼ 0.5.
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regression. Therefore, a QTL is more likely to be
mapped onto the marker closer to it. Due to the same
reason, the highest power of ICIM was not reached on
interval (120, 130) on chromosome 3 where QZ9 was
located (i.e., 129 cM), but was achieved on interval (130,
140), as shown in Figure 2.

When calculated from all peaks, the estimate of QTL
effect was almost unbiased. In comparison, the QTL
effect was generally overestimated when calculated from
the significant peaks only, which was expected as small-
effect estimates in some simulation runs were not
counted. Therefore, in any simulation studies, it is not
likely to achieve an unbiased estimation of QTL effect if
only significant QTL are counted. Compared with CIM,

ICIM tends to have smaller bias in effect estimation in
most cases (Table 4).

Simulation results from genome 2: The advantage of
ICIM over CIM is also significant for genome 2 (Figures
5 and 6). The power given in Figure 5A was calculated
for each chromosomal interval of 5 cM as defined by two
neighboring markers. For ICIM, the highest powers
were achieved in the intervals where QY1, QY3, QY4,
QY5, QY7, and QY8 were located, which were 0.56, 0.69,
0.67, 0.72, 0.71, and 0.78, respectively. The highest
powers were achieved in the neighboring intervals for
QY2 and QY6 (Figure 5A). The result of CIM was com-
parable to that of ICIM for chromosome 4, for which the
two QTL were linked in coupling with a distance of 35

Figure 3.—Power of QTL detection of CIM and ICIM for two genetic models and heritability levels under genome 1. Power was
calculated as the proportion of runs that detected QTL within the interval defined as 5 cM from each side of the predefined QTL.
The QTL were rearranged in ascending order by the percentage of variance explained. (A) Additive genetic model, H ¼ 0.8. (B)
Additive genetic model, H ¼ 0.5. (C) Additive and epistasis model, H ¼ 0.8. (D) Additive and epistasis model, H ¼ 0.5.

Figure 4.—Average number of QTL identified on the 10-cM intervals of the 10 predefined QTL (A) and other chromosome
regions (B) for two genetic models and heritability levels under genome 1.
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cM. The worst performance of CIM was for chromo-
some 2, for which the two QTL were linked in repulsion
with a distance of 21 cM (Figure 5A).

The mean LOD profile of ICIM across the 100 sim-
ulations had eight clear peaks corresponding to the
eight major predefined QTL, while that of CIM only
had two clear peaks on chromosome 4 (Figure 5B). The
mean estimated effects from ICIM across the 100 sim-
ulation runs were close to the true QTL effects for all the
eight predefined major QTL. But CIM tended to over-

estimate QTL effects on chromosomes 1, 3, and 4 where
the linked QTL were in the coupling phase, but tended
to underestimate QTL effects on chromosome 2, where
the linked QTL were in the repulsive phase (Figure 5C).

When a confidence interval of 10 cM with the pre-
defined QTL at the center was considered, ICIM had a
power .0.87 to map the eight major QTL (Figure 6A).
The powers of CIM were .0.76 for QTL on chromo-
somes 1, 3, and 4, for which linked QTL were in the
coupling phase, but were only 0.09 for QY3 and 0.47 for

Figure 5.—Power of QTL detection (A), average LOD (B), and additive effect (C) profiles across the 100 simulation runs of
CIM and ICIM based on genome 2. Power was calculated as the proportion of runs that detected the presence of QTL for each of
the 80 intervals defined by 84 markers evenly distributed on four chromosomes. Arrow size and direction represent the approx-
imate effect size and direction of the pointed QTL, respectively.

Figure 6.—Power (A)
and deviation of position
estimation (B) in genome
2 from 100 simulation runs.
Each predefined QTL was
assigned to a 10-cM interval
centered at the true QTL
location.
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QY4 on chromosome 2, where the two QTL were linked
in repulsion (Figure 6A). In addition, ICIM also re-
sulted in less false positives (total false positives in inter-
vals other than the eight confidence intervals divided
by 8) than CIM (Figure 6A). Across the 100 simulations,
the estimates of QTL effects were almost unbiased for
ICIM (Figure 6B), while the effect estimates of QY3 and
QY4 on chromosome 2 were about twice the true QTL
effects for CIM.

DISCUSSION

Theoretical justification of ICIM: For both ICIM and
CIM, Mendelian segregation and recombination laws
(Table 1) and quantitative genetic theories [models
(1)–(3)] provide the theoretical basis (Falconer and
Mackay 1996; Lynch and Walsh 1998; Hartl and
Jones 2005), and regression and maximum-likelihood
principles [Table 1, model (4), and Equation 6] provide
the statistical basis. The statistical assumption made in
CIM and ICIM is that the residual errors in model (4)
are normally distributed. The genetic assumptions are
that (i) the genotypic value of an individual is the

summation of effects from all loci affecting the trait of
interest and (ii) linked QTL are separated by at least one
blank interval. These well-established genetic and sta-
tistical theories ensure that these mapping methods are
valid under these assumptions. However, simulations
are useful if one wants to investigate their sensitivities
to the violation of the underlying assumptions, such as
nonisolated QTL and epistasis.

ICIM makes the background marker selection pro-
cess easier: Various methods for selecting background
markers are available in QTL Cartographer implement-
ing CIM (Wang et al. 2005b), and different methods
may result in different, sometime controversial, map-
ping results. A mapping population from the first
simulation run using the additive genetic model and
H¼ 0.8 in genome 1 was used to demonstrate this point.
Three cofactor selection methods used in CIM, i.e.,
unlinked marker control, all marker control, and the
standard model using stepwise regression (window size
10 cM), gave rather different LOD profiles (Figure 7A).
The method using unlinked markers as a control was
similar to IM (Figure 7A), which should not be re-
commended. The method using all markers as a control

Figure 7.—LOD profiles of (A) IM, CIM (with three background marker selection methods), and (B) ICIM (with three prob-
ability levels). The first simulated backcross population of 200 individuals was used, where the 10 QTL were additive, and H ¼ 0.8.
For clarity, 20, 40, and 60 were added to the LOD scores of CIM with unlinked marker control, of CIM with all marker control, and
of CIM standard model control, respectively. Similarly, 20, 40, and 60 were added to the LOD scores of ICIM with PIN ¼ 0.10 and
POUT ¼ 0.20, of ICIM with PIN ¼ 0.05 and POUT ¼ 0.10, and of ICIM with PIN ¼ 0.01 and POUT ¼ 0.02, respectively.
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had clear peaks where major QTL were located, but the
LOD score was generally lower than that from IM
(Figure 7A). Moreover, power analysis showed that this
method resulted in a large number of false positives on
the two devoid chromosomes (results not shown), and
this method cannot be applied when markers outnum-
ber the mapping population size.

In ICIM, the background markers were selected only
once using the standard stepwise regression, and thus
the difficulty in choosing the background markers
associated with CIM can be avoided. To investigate the
influence of marker inclusion and exclusion criteria
in stepwise regression on mapping results, different
P-values for entering variables (PIN) and removing
variables (POUT) were applied to the population used
above for comparing marker selection methods in CIM.
The LOD profiles from three levels of PIN and POUT
showed very little difference (Figure 7B). All three
probability levels identified the 8 largest QTL (Figure
7B). When PIN¼ 0.10 and POUT¼ 0.20 were used, the
average power to detect the 10 predefined QTL from
the additive genetic model and H ¼ 0.8 was slightly
lower than that from PIN ¼ 0.05 and POUT ¼ 0.10, i.e.,
73.7 vs. 75.2 (calculated from Table 5), but the false
positive was much higher, i.e., 511 vs. 367 (Table 5).
Similar results were also observed for other genetic
models. Therefore, ICIM is robust to the choice of
probability levels, and in practice a lower probability
level should be applied to further reduce the false
positives without sufficiently changing the detection
power (Figure7B and Table 5).

ICIM does not increase sampling variance compared
to IM: According to property 3 proposed by Zeng

(1994), conditioning on linked markers in the multiple-
regression analysis will reduce the influence of inter-
ference caused by possible multiple linked QTL on

hypothesis testing and parameter estimation, but with a
possible increase of sampling variance. The increased
sampling variance can be seen from the lower LOD
scores (compared with IM) that resulted from CIM
using all markers as a control (Figure 7A). But this is not
the case for ICIM. At most peak positions, ICIM has
higher LOD scores than IM (Figure 7, A and B). So for
ICIM, properties 2 and 3 of CIM (Zeng 1994) can be
merged as ‘‘Conditioning on both linked and unlinked
markers in the multiple regression analysis will reduce
the sampling variance of the test statistic by controlling
some residual genetic variation and thus will increase
the power of QTL mapping’’ (Zeng 1994, p. 1460).

CIM and ICIM are valid and simple methods for
mapping with populations derived from biparental
crosses: CIM, when implemented properly, represents
the best single-interval mapping method based on
linear model and maximum-likelihood principles. Re-
cently, Bayesian models have gained some popularity
among theoreticians. In a sense and in the context of
QTL mapping using populations derived from biparen-
tal crosses, both frequentist statistics and Bayesian
statistics deal with the maximization of likelihood
function. The major difference is that a prior distribu-
tion has to be considered in any Bayesian model, and
the choice of the prior in the case of QTL mapping is
rather arbitrary and a tedious process (Xu 2003). On
the basis of the prior, Bayesian statistics derive the
posterior and then conduct inference on the basis of
the posterior distribution. The conventional maximum
likelihood can be viewed as a special case of Bayesian
models where a uniform density is used as the prior
distribution. It should be noted that the effect and
advantage of prior distribution diminish as the sample
size increases (Gelman et al. 2004). The population size
for a QTL mapping population is normally hundreds,

TABLE 5

Effect of marker inclusion and exclusion probabilities in the stepwise regression of ICIM

Genetic model PIN POUT QZ1 QZ2 QZ3 QZ4 QZ5 QZ6 QZ7 QZ8 QZ9 QZ10 False QTLa

ADD, H ¼ 0.8 0.01 0.02 35 77 57 94 94 95 22 99 82 71 267
0.05 0.10 41 76 59 96 95 92 32 99 86 76 367
0.10 0.20 40 72 56 94 94 92 35 99 82 73 511

ADD, H ¼ 0.5 0.01 0.02 13 32 11 51 50 71 8 79 41 24 286
0.05 0.10 12 36 15 63 63 72 18 82 47 32 371
0.10 0.20 18 33 24 68 68 71 26 83 49 33 531

ADD 1 EPI, H ¼ 0.8 0.01 0.02 10 44 24 61 56 73 7 91 47 26 250
0.05 0.10 14 35 25 74 69 77 11 92 51 36 331
0.10 0.20 15 34 28 73 68 77 14 92 54 38 481

ADD 1 EPI, H ¼ 0.5 0.01 0.02 9 20 9 17 26 50 2 54 23 7 194
0.05 0.10 11 20 13 31 37 52 5 61 30 12 273
0.10 0.20 11 22 15 36 44 52 8 68 33 15 459

ADD, additive genetic model as defined in Table 2; ADD 1 EPI, additive and epistasis genetic model as defined in Table 2; H,
heritability in the broad sense; PIN, the largest P-value for entering variables; POUT, the smallest P-value for removing variables.

a All significant positives not located in the 10 predefined QTL intervals.
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which can be reasonably regarded as a large sample in
statistics. Theoretically, Bayesian mapping has no flaw in
terms of models. However, Bayesian statistics may not
have significant advantages over frequentist statistics in
QTL mapping for some standard mapping populations
derived from biparental crosses, considering the diffi-
culty in choosing prior distributions and the complexity
in computing posterior distributions.

Genome 2 used in our simulation has been used by
Yi et al. (2003) to demonstrate their Bayesian mapping
method. The results of ICIM shown in Figure 5 were
comparable with the probability profile from the Bayes-
ian method (Figure 1 in Yi et al. 2003). The mean effects
for the eight identified large-effect QTL were 1.02, 0.96,
�0.83, 0.81, �0.78, �0.87, 1.00, and 1.03, respectively
(Figure 5C), which were close to the true additive effects.
But ICIM is much simpler in principle and faster in
computation. It required ,5 min for ICIM to complete
the 100 simulation runs in a personal computer. In
addition, we also compared ICIM with the Bayesian map-
ping method proposed by Sillanpää and Arjas (1998),
and the results of ICIM were very similar to those from
Bayesian models (results not shown).

Since the number of QTL is always much lower than
the number of markers, QTL mapping can be viewed as
an issue of model selection (Broman and Speed 2002;
Sillanpää and Corander 2002). A number of statistical
methods are available to search through the space of
models and various criteria can be used to select the best
model (Miller 1990; Piepho and Gauch 2001). How-
ever, there is no conclusion in statistics as to which
model selection method is the best (Miller 1990). On
the basis of our simulation results, the performance of
stepwise regression is satisfactory. However, we do not
exclude the possibility that other model selection meth-
ods may achieve similar performance as the stepwise
regression used in ICIM.

The calculation of probability that a QTL is in a given
interval is viewed as a major advantage of Bayesian
models (Ball 2001). In any likelihood-ratio test-based
mapping methods such as IM, CIM, and ICIM, the QTL
position is estimated as the peak of the LOD profile with
a LOD score over a specified threshold value. The LOD
score is actually a likelihood-ratio test (LRT) [LRT ¼
2 log(10)LOD � 4.61 LOD]. In the case of mixture
models (McLachlan and Basford 1988; Goffinet

et al. 1992), the asymptotic distribution of LRT may
not exactly follow a x2ðd:f :Þ, where d.f. is the difference
in the number of dependent variables under the two
hypotheses. However, Zeng (1994) showed when the
sample size was large and the number of markers fitted
to the model was relatively small, the LRT statistic was
still approximately distributed as x2ðd:f : ¼ 1Þ. Another
way to find the LOD threshold is to use permutation
tests (Churchill and Doerge 1994). A probability may
be calculated at any testing position if required. In any
mapping methods based on the likelihood-ratio test, the

LOD score actually indicates the likelihood of a QTL at
the testing position. The similarity between the mean
LOD score profile shown in Figure 5B and the proba-
bility profile shown in Figure 1 in Yi et al. (2003) is con-
sequently not unexpected.

Multiple interval mapping (MIM) was proposed to
map multiple QTL simultaneously (Kao et al. 1999;
Zeng et al. 1999). MIM may have avoided the compli-
cated background selection process associated with
CIM, but introduced various model selection methods
(Zeng et al. 1999; Wang et al. 2005b). We applied two
model selection methods available in QTL Cartogra-
pher to the same mapping population previously used
for comparing different cofactor selection methods in
CIM. Eleven QTL were identified when the forward and
backward selection on markers was used, while only 6
QTL were identified when the MIM forward search
method was used (results not shown). Again, different
MIM model selection methods resulted in different
mapping results.

Further considerations of QTL mapping: An impor-
tant assumption of most QTL mapping methods is that
the QTL are separated by at least one blank interval. It is
expected that this assumption is more satisfactory for
narrow than for wide marker spacing. Similarly, it is a bet-
ter assumption for independent or loosely linked than
for tightly linked QTL. With the rapid development of
molecular technology, high-density linkage maps are be-
coming available for more and more species. The treat-
ment of tightly linked QTL is more an issue of biology
than of statistical methodology. Two linked QTL can be
separated only if recombinants are sampled in the
mapping population (Kearsey 2002). Therefore, the
mapping resolution is limited by the practicable map-
ping population size. Populations of size $500 are rarely
seen in practice for mapping using primary populations
such as backcross, F2, and recombination inbred lines.
Therefore, QTL mapping using primary populations
can give only a rough position and effect estimation due
to the limited population size and errors in both geno-
typing and phenotyping. Once the QTL interval has
been identified, some secondary mapping populations
should be built from the preliminary mapping popula-
tion and fine mapping needs to be conducted (Kearsey

2002). As whole-genome genotyping is not requested in
the secondary population, and selective phenotyping
may be implemented, a larger population can be used.
At the same time, new markers in the candidate intervals
may be discovered and added to the linkage map. By
then we may determine whether the identified QTL con-
tain one gene or multiple genes.

It is now common that the number of markers ex-
ceeds the sample size of the mapping population. The
performance of ICIM and other recommended map-
ping methods needs to be investigated under this situa-
tion. We have used a backcross population to illustrate
our method in this article. However, the extension of
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ICIM to F2, doubled haploids, and recombination
inbred lines is straightforward. CIM is not extendable
to epistasis (Zeng et al. 1999). As can be seen, models
(1)–(3) can be easily extended to include epistasis. For
instance, by inclusion of marker-pair multiplications in
model (4) digenic epistasis can be modeled. This work is
currently under development.

Conclusions: The problem with the current CIM
method is the arbitrariness of choosing the cofactors.
Different methods of cofactor selection will generate
different, sometime controversial results. In ICIM, sig-
nificant cofactors are selected and their corresponding
effects are estimated by using stepwise regression ana-
lysis prior to interval mapping. The effects of the cofac-
tors are then fixed when used in the genome-scanning
process. This eliminates the arbitrariness of cofactor
selection associated with CIM. ICIM has a simpler form
and faster convergence speed (EM algorithm converges
after three to five iterations), without losing the optimal
properties of CIM. ICIM gives clearly high LOD scores
at chromosomal regions with QTL but rather low LOD
scores where no QTL is located and results in less biased
estimates of QTL effects, thereby improving the map-
ping power and precision. Extensive simulations
showed that ICIM improved the performance of QTL
mapping over the existing CIM method.
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Sillanpää, M. J., and J. Corander, 2002 Model choice in gene
mapping: what and why. Trends Genet. 18: 302–307.

Soller, M., T. Brody and A. Genizi, 1976 On the power of exper-
imental design for detection of linkage between marker loci and
quantitative loci in crosses between inbred lines. Theor. Appl.
Genet. 47: 35–39.

Steinmetz, L. M., H. Sinha, D. R. Richards, J. I. Spiegelman, P. J.
Oefner et al., 2002 Dissecting the architecture of a quantitative
trait locus in yeast. Nature 416: 326–330.

Van Den Oord, E. J. C. G., and P. F. Sullivan, 2003 False dis-
coveries and models for gene discovery. Trends Genet. 19: 537–
542.

Uimari, P, and I. Hoeschele, 1997 Mapping-linked quantitative
trait loci using Bayesian analysis and Markov chain Monte Carlo
algorithms. Genetics 146: 735–743.

Wang, H., Y.-M. Zhang, X. Li, G. L. Masinde, S. Mohan et al.,
2005a Bayesian shrinkage estimation of quantitative trait loci
parameters. Genetics 170: 465–480.

Wang, S., C. J. Basten and Z-B. Zeng, 2005b Windows QTL Cartog-
rapher 2.5. Department of Statistics, North Carolina State Univer-
sity, Raleigh, NC.

Whittaker, J. C., R. Thompson and P. M. Visscher, 1996 On the
mapping of QTL by regression of phenotype on marker-type.
Heredity 77: 23–32.

Wright, A. J., and R. P. Mowers, 1994 Multiple regression for
molecular-marker, quantitative trait data from large F2 popula-
tions. Theor. Appl. Genet. 89: 305–312.

Wu, R., and M. Lin, 2006 Functional mapping—how to map and
study the genetic architecture of dynamic complex traits. Nat.
Rev. Genet. 7: 229–237.

Xu, S., 2003 Estimating polygenic effects using markers of the entire
genome. Genetics 163: 789–801.

Yi, N., V. George and D. B. Allison, 2003 Stochastic search variable
selection for identifying multiple quantitative trait loci. Genetics
164: 1129–1138.

Zeng, Z-B., 1993 Theoretical basis for separation of multiple linked
gene effects in mapping of quantitative trait loci. Proc. Natl.
Acad. Sci. USA 90: 10972–10976.

Zeng,Z-B.,1994 Precisionmappingofquantitative trait loci.Genetics
136: 1457–1468.

Zeng, Z-B., C.-H. Kao and C. J. Basten, 1999 Estimating the genetic
architecture of quantitative traits. Genet. Res. 74: 279–289.

Communicating editor: N. Takahata

374 H. Li, G. Ye and J. Wang


