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Summary

A quantitative trait could be controlled by a few major genes and many polygenes. Distinguishing the effects of
major genes from polygenes and/or environments is important for understanding the expression of a major gene
in relation to its genetic background, and for predicting the segregation of a cross in breeding. Our objective was
to re-analyze the resistance of soybean to agromyzid beanfly by a mixed inheritance model. Number of insects
in stem (NIS) was used as an indicator of resistance. The previous result from the segregation ratio of resistance
and susceptibility was that resistance was controlled by one dominant gene. The major results from the mixed
inheritance model were (1) the inheritance of resistance was controlled by one major gene along with minor genes;
(2) Additive and dominance effects of minor genes were generally less than those of the major gene and varied
among crosses, indicating different minor gene systems; (3) Heritability was higher for the major gene than for the
minor genes; (4) The F2 plants and F2:3 lines were classified into appropriate genotypes according to their posterior
probabilities and the critical value to distinguish resistant and susceptible plants was given for NIS based on the
classification. These results indicated that mixed major gene and polygene genetic analysis was superior to the
frequently used classical Mendelian method.

Introduction

For quantitative traits showing major gene effects
combined with continuous variation, it is assumed that
apart from the major gene, polygenes are included in
the inheritance system. Many genetic experiments in
plants and animals and QTL (quantitative trait locus)
mapping have also indicated differences in the mag-
nitude of the effects of individual QTLs. Major genes
are those genes in the QTL system with relatively large
effects. Therefore, the inheritance system of a quant-
itative trait might consist of both a few major genes
and a number of polygenes. This genetic model is
called a mixed major gene and polygene inheritance
model (or mixed inheritance model or mixed genetic
model). The classic Mendelian method can be used to

analyze the inheritance of major genes contained in
the system by classifying different segregation types
around the valley point or the critical value separat-
ing two modes. This approach, however, depends on
some artificial factors in the analysis. Furthermore,
genetic backgrounds may differ, so there may not be
a common critical value for all crosses.

QTL mapping has been widely used to uncover
the genetic structure of variation in agronomic and
economical traits relevant to breeding. This strategy
requires molecular data. However, even without the
aid of molecular data, a number of methods have been
used to analyze the mixed inheritance model in hu-
man and animal populations (Elston & Stewart, 1973;
Morton & MacLean, 1974; Elston, 1984; Famula,
1986; Hoeschele, 1988; Knott et al., 1991; Guo &
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Thompson, 1992; Shoukri & McLachlan, 1994; Janss
et al., 1995). But due to different mating systems and
breeding objectives between plants and animals, these
methods are not generally applicable in plant quant-
itative genetic analysis. Wang (1996), Wang & Gai
(1998) and Gai & Wang (1998) developed a segreg-
ation analysis method to apply the mixed inheritance
model in the study of variation for quantitative traits
in plants with the aim to estimate genetic paramet-
ers describing the variation of a quantitative trait. The
principle of the method can be described as follows.
Firstly, it is supposed that trait variation in each se-
gregating population is due to the variation in the
distribution of major genes modified by polygenes and
environments. Secondly, the major gene heritability
and polygene heritability are defined, and standard
curves of the mixture distributions under various ge-
netic conditions are drawn. Thus, comparing prac-
tical frequency distributions with the standard curves
can approximate the inheritance model of a quantit-
ative trait. This process is called graphical analysis
(Wang, 1996). Thirdly, likelihood functions under
various possible genetic models are established, max-
imum likelihood estimates of parameters contained in
each model are calculated through the EM algorithm
(Dempster et al., 1977; McLachlan, 1988), and the
best fitting genetic model and its parameter estimates
are chosen by Akaike’s information criterion (Akaike,
1977), likelihood ratio test and tests of goodness of fit.
Finally, each individual in segregating generations is
classified into a suitable component distribution using
Bayesian posterior probabilities. Considering the dif-
ficulty of crossing in soybean, joint analyses based on
the five generations P1, F1, P2, F2, F2:3 (Wang & Gai,
1998) and the six generations P1, F1, P2, B1, B2, F2
(Gai & Wang, 1998) were developed separately.

Agromyzid beanfly (Melanagromyza sojae Zehnt-
ner) is one of the most important pests in soybean
production in regions south of the Great Wall of China.
It infects almost all soybean plants and causes great
yield losses every year. Breeding new cultivars with
resistance to beanfly is the most effective way to con-
trol its damage (Chiang & Norris, 1983). Wei et al.
(1989) made crosses between resistant lines and sus-
ceptible lines and investigated the number of insects in
the stem and the total number of insects. They found
a common critical value among crosses to classify
individuals in F2 and F2:3 families into resistant or
susceptible. From the segregation ratio of resistance
and susceptibility, they concluded that resistance was
controlled by one dominant gene. They also showed

the absence of any cytoplasmic effect. Quantitative
variation within categories indicated that resistance
was modified by polygenes. In this paper, the graph-
ical analysis and joint segregation analysis of multiple
generations P1, F1, P2, F2 and F2:3 will be used to re-
analyze the genetic data in Wei et al. (1989), with the
objectives to identify whether inheritance of resistance
to beanfly is controlled by one major gene or mixed
one major gene and minor genes, and furthermore, to
estimate the genetic parameters related to both major
gene and minor genes.

Materials and methods

Materials

Three crosses, JNCWD × HJQDHY (I), WXCJGJ ×
PXTED (II) and 1138–2 × PXTED (III), between
resistant lines JNCWD, WXCJGJ and 1138–2 and sus-
ceptible lines HJQDHY and PXTED were made at
Jiangpu Experimental Station of Nanjing Agricultural
University in the summer of 1985. All the parental
materials are pure lines selected from land races in Ji-
angsu, China. The F1s were planted in Hainan Island,
China in the winter of 1985, the F2s were grown in
the spring of 1986 also in Hainan Island, and then all
the generations P1, F1, P2, F2 and F2:3 were planted at
Jiangpu Experimental Station in the summer of 1996.
An experimental design similar to a split plot was
used, with crosses in main plots and parents and hybrid
generations in sub-plots. The resistance indices were
the numbers of insects in the stem (NIS) and the total
number of insects (NIP, which is NIS plus the number
of insects in the petiole), which were investigated in
the fall at the flowering stage for every generation in
the three crosses.

Graphical analysis

For a mixed inheritance model, the phenotypic value
(p) can be expressed as the summation of population
mean (m), major gene effect (g), polygene effect (c)
and environmental effect (e), i.e., p = m + g +
c + e (Morton & MacLean, 1974), where g is dif-
ferent for different major gene genotypes, and c and
e are normally distributed variables. So, the pheno-
typic variation (σ 2

p) can be expressed as major gene
variation (σ 2

mg), polygenic variation (σ 2
pg) and environ-

mental variation (σ 2
e ). Therefore, we can define major

gene heritability (h2
mg) and polygene heritability (h2

pg)



11

as h2
mg = σ 2

mg/σ 2
p and h2

pg = σ 2
pg/σ

2
p , respectively.

For simplicity, we suppose σ 2
p=1. So, for the mixed

one major gene and polygene inheritance model, the
major gene and polygenic heritabilities in the F2 gen-
eration derived from a cross between two inbreds can
be represented as:

h2
mg = 1

2a2 + 1
4d2 and h2

pg = V ∗
A + V ∗

D,

where a and d are the additive and dominance effects
of the major gene, and V ∗

A and V ∗
D are the sums of the

additive and dominance variances of individual minor
genes (Kearsey & Pooni, 1996). Hereafter, we will use
A, D and E to represent V ∗

A, V ∗
D and σ 2

e , respectively.
Supposing r to be the dominance degree of the major
gene, and the average dominance ratio of polygenes√

2D/A to be 0.5 (the distribution shapes of different
generations do not change too much for different val-
ues of

√
2D/A, and this value is under the cond ition

that each minor gene has the dominance degree 0.5),
we have

a = 2
√

h2
mg√

2+r2
, d = ra,A = 8

9h2
pg,D = 1

8A, and

E = 1 − h2
mg − h2

pg .

Thus, we can have the distribution of F2, B1, B2 and
F2:3 as follows.

F2 : 1
4N(−a,A + D + E) + 1

2N(d,A + D + E)+
1
4N(a,A + D + E)

B1 : 1
2N(−a, 1

2A + D + E)+
1
2N(d, 1

2A + D + E)

B2 : 1
2N(d, 1

2A + D + E)+
1
2N(a, 1

2A + D + E)

F2:3 : 1
4N(−a,A + 1

4D + 1
n
E)+

1
2N( 1

2d, 1
2a2 + 1

4d2 + A + 1
4D + 1

n
E)+

1
4N(a,A + 1

4D + 1
n
E)

where N is the symbol of the normal distribution,
the bracketed items are the mean and variance of the
normal distribution, the summation of two or three
normal distributions indicates a normal mixture with
the number in front of symbol N being the propo rtion
of the component distribution in the mixture, and n

is the sample size in each F2:3 family. For backcross
generations, we also suppose the cross product of the
additive and the dominance effects of polygenes to be
zero. So, we can draw the distribu tion curves of the
above generations under different genetic parameters.
From the above distributions, we can also calculate the

major gene and polygenic heritabilities in all genera-
tions except F2. In our research, we set h2

mg = {0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2}, h2
pg = {0, 0.1, 0.2,

0.3}, and r = {0, 0.5, 1.0, 1.5}. For F2:3, we have
three different sample sizes in a family, i.e., 5, 10
and infinity. Figure 1, as an example, shows curves
for the mixed one complete dominant major gene and
polygene inheritan ce model. These curves are called
standard curves.

From those curves, we can have the following
impressions. (1) Phenotypically normal distribution
does not implicate a polygene system; (2) If skew-
ness and multi-modality are the evidence for the ex-
istence of a major gene, different generations have
different powers to detect the major gene; (3) Compar-
ing practical frequency distributions with the standard
curves can approximate the inheritance model of a
quantitative trait.

Joint segregation analysis

The main principle and steps in joint segregation ana-
lysis of multiple generations P1, P2, F1, F2 and F2:3
will be described as follows.

(1) Genetic model establishment. Under some as-
sumptions (Gai & Wang, 1998), three classes of ge-
netic model were established, i.e., one major gene in-
heritance model (1MG), polygenic inheritance model
(PG) and mixed one major gene and polygene in-
heritance model (MX). Considering the additive and
dominance relationships of both the major gene and
polygenes, we also established different model types
within each model class. Table 1 lists these genetic
models and the genetic parameters in each model.
There are two kinds of parameters, which require cla-
rification in the joint segregation analysis. One is of
component parameters, which are used to describe the
characteristics of a mixture distribution. Another is
of genetic parameters. In the joint segregation ana-
lysis, we will first estimate the component parameters
and then estimate genetic parameters from component
parameters.

(2) Component parameter estimation. Maximum
likelihood estimates of component parameters in each
genetic model were carried out by the EM algorithm.
Let’s take the MX-class model as an example. Suppos-
ing A and a to be the two alleles of the major locus and
AA, aa and Aa to be the genotypes of parents and F1,
respectively, the F2 genotypes will be a 1:2:1 mixture
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Figure 1. Distribution curves of F2, B1, B2 and F2:3 for mixed one dominant major gene and polygene inheritance model. The major gene
heritabilities in F2 are from 0.9 to 0.2 in rows in each sub-figure.
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Table 1. Genetic models and their parameters in the joint segregation analysis of the five generations P1, F1, P2, F2 and F2:3

Model class Model type and its implication Genetic parameters

One major 1MG-AD: additive and dominant major gene m, a, d, σ 2
mg, σ 2

e

gene (1MG) 1MG-D: dominant major gene m, a, d(= a), σ 2
mg, σ 2

e

1MG-A: additive major gene m, a, d(= 0), σ 2
mg, σ 2

e

1MG-ND: negative dominant major gene m, a, d(= −a), σ 2
mg, σ 2

e

Polygenes PG-ADI: additive, dominance and epistasis polygenes m, [a], [d], [aa], [dd], σ 2
pg, σ 2

e

(PG) PG-AD: additive and dominance polygenes m, [a], [d], σ 2
pg, σ 2

e

Mixed one MX-AD-ADI: mixed one major gene and polygenes See text for details

major gene MX-AD-AD: mixed one major gene and additive-dominant polygenes m, a, d, [a], [d], σ 2
mg, σ 2

pg, σ 2
e

and MX-D-AD: mixed one dominance major gene and additive-dominant
polygenes

m, a, d(= a), [a], [d], σ 2
mg, σ 2

pg, σ 2
e

polygenes MX-A-AD: mixed one additive major gene and additive-dominant poly-
genes

m, a, d(= 0), [a], [d], σ 2
mg, σ 2

pg, σ 2
e

(MX) MX-ND-AD: mixed one negative dominant major gene and additive-
dominant polygenes

m, a, d(= −a), [a], [d], σ 2
mg, σ 2

pg, σ 2
e

m: population mean; a: additive effect of the major gene; d: dominance effect of the major gene; [a]: additive effect of polygenes; [d]:
dominance effect of polygenes; σ 2

mg : major gene variance; σ 2
pg : polygenic variance; σ 2

e : environmental variance.

of AA, Aa and aa, and so will be the genotypes for F2:3
(the genotype of a F2:3 family is represented by that of
its F2 parent). Supposing observations from P1, F1 and
P2 are distributed as normal distributions N(µ1, σ

2),
N(µ2, σ

2) and N(µ3, σ
2), respectively, F2 observa-

tions and F2:3 family means will be distributed as 1:2:1
mixtures of three normal distributions, which can be
denoted as,

F2 : (1/4)N(µ41, σ
2
4 ) + (1/2)N(µ42, σ

2
4 )+

(1/4)N(µ43, σ
2
4 ) and

F2:3 : (1/4)N(µ51, σ
2
51) + (1/2)N(µ52, σ

2
52)+

(1/4)N(µ53, σ
2
53),

where µ41, µ42 and µ43 represent means of the F2
individuals having major genotypes AA, Aa and aa,
respectively, and µ51, µ52 and µ53 represent means
of the F2:3 families derived from AA, Aa and aa F2
individuals, respectively. σ 2 is the combined variance
of the three non-segregating generations P1, F1 and
P2, σ 2

4 is the common variance of components in F2,
σ51 and σ53 are the common variances of components
having mean µ51 and µ53, and σ 2

52 is the variance of
the component having mean µ52. For reasons of sim-
plicity, σ 2

51, σ 2
52 and σ 2

53 are assumed to be unrelated
with the component means in F2 and F2:3. Component
parameters in this model consist of µ1, µ2, µ3, µ41,
µ42, µ43, µ51, µ52, µ53, σ 2, σ 2

4 , σ 2
51, σ 2

52 and σ 2
53.

(3) Model selection and test. From Akaike’s Inform-
ation Criterion (Akaike, 1977)) the model with the

least AIC value is the best fitting model. Here, AIC =
−2Lc(�) + 2N , where Lc(�) is the maximum logar-
ithm likelihood and N is the number of independent
parameters in a genetic model. We first use AIC to
select the best fitting model class. Then we use the
likelihood ratio test to test whether two genetic models
in a model class show significant difference. If there
is no significant difference, we will choose the one
with lower parameter. By the above two steps, we
can always select the best fitting model among the 11
models. But there may be a case where the real model
is not included in all of these models. We then use
tests of goodness of fit to further test the fitnes s of
the selected model. If the selected model passes all the
goodness-of-fit tests, we will say this model is suitable
for the genetic data. Or, other approaches or genetic
models should be considered for the genetic data.

(4) Genetic parameter estimation. If all kinds of bi-
genic interactions are considered for model MX-AD-
ADI, we will have the following nine equations.

µ1 = m + a + [a] + [aa]′ + [aa],

µ2 = m + d + [d] + [dd]′ + [dd],

µ3 = m − a − [a] + [aa]′ + [aa],

µ41 = m + a + (1/2)[d] + (1/2)[ad]′+
(1/4)[dd],
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Table 2. Frequency distribution of the number of insects in stem (NIS)

Cross Generation NIS Sample Mean Variance

0 1 2 3 4 5 6 7 8 9 size

I P1 3 7 4 6 20 1.65 1.13

JNCWD F1 4 4 6 6 20 1.70 1.21

×HJQDHY P2 4 6 3 3 4 20 6.85 2.03

F2 26 36 45 34 25 12 5 2 1 3 189 2.47 3.46

F2:3 7 61 5 9 17 1 100 2.36 2.99

II P1 4 7 7 2 20 1.35 0.83

WXCJGJ F1 1 11 5 3 20 1.50 0.65

×PXTED P2 5 3 6 4 2 20 5.85 2.23

F2 18 52 28 14 11 10 8 5 146 2.24 3.54

F2:3 5 52 5 5 15 9 91 2.71 3.90

III P1 2 5 5 8 20 1.90 1.19

1138-2 F1 5 7 5 3 20 1.30 1.01

×PXTED P2 6 6 5 2 1 20 5.30 1.31

F2 24 36 39 37 20 20 12 9 3 200 2.82 4.10

F2:3 16 68 15 5 18 5 127 2.26 3.08

µ42 = m + d + (1/2)[d] + (1/2)[ad]′+
(1/4)[dd],

µ43 = m − a + (1/2)[d] − (1/2)[ad]′+
(1/4)[dd],

µ51 = m + a + (1/4)[d] + (1/4)[ad]′+
(1/16)[dd],

µ52 = m + d + (1/4)[d] + (1/4)[dd]′+
(1/16)[dd], and

µ53 = m − a + (1/4)[d] − (1/4)[ad]′+
(1/16)[dd],

where m, a and d have the same meaning as before,
[a] and [d] are the additive and dominance effects of
polygenes, [aa]′, [ad]′ and [dd]′ are the three kinds of
interaction between the major gene and the polygene
system, and [aa] and [dd] are the two kinds of interac-
tion among polygenes (Kearsey & Pooni, 1996). It is
impossible to estimate these 10 parameters from those
equations. So, other generations will be required to
estimate all the ten genetic effects. Here, we ignore all
the interaction effects and only estimate m, a, d, [a]
and [d] from estimates of component means by the
least squares method.

σ 2, the weighted average of variances of genera-
tions P1, F1 and P2, can be used to estimate the en-

vironmental variance in segregating generations, i.e.,
σ 2 can be treated as the environmental variance in
F2 and σ 2/n (n is the sample size of a F2:3 family
and n = 5 in this genetic experiment) as the environ-
mental variance of F2:3 family means. Moreover, σ 2

4
can simply be viewed as the F2 variation excluding the
major gene variation. So, σ 2

4 − σ 2 can be considered
as the polygenic variance in F2, when σ 2

4 > σ 2; other-
wise, the polygenic variance in F2 is set to 0. Similarly,
σ 2

51 − σ 2/n can simply be viewed as the estimate
of polygenic variance in F2:3, when σ 2

51 > σ 2/n;
otherwise, the polygenic variance in F2:3 is set to 0.

(5) Posterior classification. While the best fitting ge-
netic model is selected, the posterior probabilities of
an F2 individual and F2:3 family belonging to different
components can be calculated at the same time. This
allows classification of each F2 individual and F2:3
family by Bayesian rules.

Results

Distribution characteristics of NIS and the graphical
analysis of the inheritance

Both NIS and NIP can be used as an index of resist-
ance to beanfly. Because NIS showed higher correl-
ations among years, lower error variance and higher
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Table 3. The best fitting genetic model and its AIC value and estimates of component parameters

Cross Model AIC µ1 µ2 µ3 µ41 µ42 µ43 µ51 µ52 µ53 σ 2 σ 2
4 σ 2

51 σ 2
52

I MX-AD-ADI 1220.75 1.65 1.70 6.85 1.82 1.83 4.84 1.30 1.36 5.13 1.48 1.93 0.15 0.58

II MX-AD-ADI 1029.10 1.35 1.50 5.85 1.32 1.37 5.16 1.39 1.47 5.54 1.26 0.96 0.27 0.95

III MX-AD-ADI 1364.05 1.90 1.30 5.30 2.25 1.72 5.49 1.30 1.41 5.44 1.19 1.59 0.18 0.79

heritability than NIP, Gai et al. (1989) proposed the
use NIS as the major index of resistance. Both NIS
and NIP were investigated and analyzed in the present
research, and similar results were attained. Therefore,
the NIS index will mainly be used in the paper.

From frequency distributions of NIS in Table 2,
we can see that the F1 shows a trend toward the res-
istant parent in all the three crosses. F2 and F2:3 are
genetically segregating populations, but the variation
in F2 is greater than that in F2:3 except for cross II. All
three F2’s demonstrate single mode distributions, in
contrast to F2:3 distributions showing bi-modality. The
component distribution with a lower mean occupies a
larger proportion in the F2:3 mixture than that with the
higher mean. By comparing these distributions with
the standard curves in Figure 1, we found that the
fifth and sixth rows of Figure 1.a, and the fourth and
fifth rows of Figure 1.b are similar to the F2 and F2:3
frequency distributions in Table 2. No curves in Fig-
ure 1.c and Figure 1.d are similar to these distributions.
This means the polygenic heritability in F2 cannot ex-
ceed 20%. We also found other similar standard curves
where the major gene displays partial or over dom-
inance. So, we can conclude from graphical analysis
that a mixed one major gene and polygene inheritance
model fits the inheritance of resistance to agromyzid
beanfly. There exist dominant effects, but the degree
of dominance cannot be determined from graphical
analysis. The major gene heritability (h2

mg) in F2 is

about 50%, and the polygenic heritability (h2
pg) in F2

is less than 20%; the major gene heritability (h2
mg) in

F2:3 is about 80%, and the polygenic heritability (h2
pg)

in F2:3 is less than 10%.

Mixed inheritance model for the resistance of
soybean to agromyzid beanfly

From the estimates of AIC, we can see that model
MX-AD-ADI in all three crosses shows the lowest
AIC value among the 11 models. So, it is the best
fitting genetic model to explain the inheritance of
resistance to beanfly according to Akaike’s informa-

Table 4. Genetic parameters of resistance of soybean to bean-
fly from the joint analysis of P1, P2, F1, F2 and F2:3

Generation Estimate Cross I Cross II Cross III

All a –1.71 –2.00 –1.85

d –1.79 –2.20 –2.57

d/a 1.05 1.10 1.39

[a] –0.88 –0.25 0.15

[d] –0.49 0.14 0.65

F2 σ 2
p 3.46 3.54 4.10

h2
mg (%) 44.2 72.9 61.2

h2
pg (%) 13.0 0 9.8

F2:3 σ 2
p 2.99 3.90 3.08

h2
mg (%) 95.0 93.1 94.2

h2
pg (%) 0 0.5 0

a: additive effect of the major gene; d: dominance effect of the
major gene; [a]: additive effect of polygenes; [d]: dominance
effect of polygenes; σ 2

p : phenotypic variance; h2
mg : major gene

heritability; h2
pg : polygenic heritability.

tion criterion. The results from likelihood ratio tests
between model MX-AD-ADI and other MX models
indicate that MX-AD-ADI is more suitable than MX-
AD-AD, MX-D-AD, MX-A-AD and MX-ND-AD.
The results from tests of goodness of fit also indicate
its fitness (results not shown). So we can reasonably
deduce that the trait of resistance in the three crosses
is determined predominantly by one major gene in
combination with polygenes. And, there may exist
interaction among polygenes and even between the
major gene and the polygene system. This result has
extended the previous one from classical Mendelian
analysis. The estimates of component parameters of
model MX-AD-ADI are given in Table 3.

Genetic parameters of the resistance to agromyzid
beanfly

From Table 3, we can obtain estimates of genetic para-
meters in model MX-AD-ADI (Table 4). From Table
4, we see that additive effects of the major gene are
–2.00∼–1.71 heads/plant, and the degrees of domin-
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Table 5. Posterior probability and estimated genotype of F2 and F2:3 of cross II

NIS Frequency Posterior probability Estimated

AA Aa aa genotype

F2

0–2 98 0.35–0.32 0.65–0.67 0.00 Aa+AA

3 14 0.28 0.61 0.11 Aa+AA+aa

4 11 0.04 0.09 0.86 aa+Aa

5–7 23 0.00 0.00 1.00 aa

F2:3
0.80 5 0.45 0.55 0.00 Aa+AA

1.00–1.60 43 0.53–0.58–0.55 0.47–0.42–0.45 0.00 AA+Aa

1.80–2.00 14 0.47–0.36 0.53–0.64 0.00 Aa+AA

4.20–4.60 3 0.00 0.95–0.57 0.07–0.43 Aa+aa

4.80–5.00 5 0.00 0.26–0.06 0.74–0.94 aa+Aa

5.20–6.60 20 0.00 0.02–0.00 0.98–1.00 aa

ance are 1.05∼1.39. The additive ([d]) and dominan
ce ([h]) effects of polygenes can be either positive
or negative among crosses, which shows differences
in their polygenic background. But, in general, the
additive and dominance effects of polygenes are less
than those of the major gene. The major gene heritab-
ilities in F2 were 44.2∼72.9% and those in F2:3 were
93.1∼95.0%, which are greater than those in F2. The
polygenic heritabilities in F2 were 0∼13% and those
in F2:3 were 0∼0.5%, which are less than those in F2.

Some polygenic heritabilities are estimated as 0,
but the model test shows polygenic variation. There
might be two reasons for such outcomes. One is that it
is not appropriate to view σ 2 as the estimate of the en-
vironmental variation in segregating genera tions. The
other is due to epistasis effects between the major gene
and minor genes.

Classification of major gene genotypes in segregating
generations

The classification process is the same for each cross.
As an example, the classification of cross II is given in
Table 5. Results of all the three crosses are summar-
ized in Table 6. In Table 5, taking the 0.05 probability
as an impossible event, in dividuals in F2 having 0∼3
insects can be classified as genotype Aa, but some
of them may be genotype AA or aa with a probabil-
ity more than 0.05; individuals having insect numbers
more than 3 can be classified as aa, but some of them
having 4 insects have a probability more than 0.05
of being Aa. For F2:3, lines having the mean insect

Table 6. The estimated F2 genotypes from posterior prob-
ability analysis for F2 and F2:3

Cross Generation NIS Number of Estimated

plants (lines) genotype

I F2 0–3 141 Aa+AA

4–9 48 aa

F2:3 0.6–2.6 73 Aa+AA

4.4–6.0 27 aa

II F2 0–3 112 Aa+AA

4–7 34 aa

F2:3 0.8–4.6 65 Aa+AA

4.8–6.6 26 aa

III F2 0–3 136 Aa+AA

4–8 64 aa

F2:3 0.0–2.8 99 Aa+AA

4.8–6.6 28 aa

number 0.8∼2.0 can be viewed as coming from AA
or Aa, and it is difficult to tell whether such families
come from AA or Aa F2 individuals; lines with a mean
insect number more than 4.6 may be derived from aa
F2 individuals, but some with mean insect number
4.6∼5.0 still have a small chance coming from Aa F2
individuals.

In Table 6, the ratios of Aa+AA to aa classified by
posterior probabilities conform to the ratio 3:1 except
the F2 in cross III. From the F2 classification data, a
resistance threshold value can be attained. For trait
NIS, the critical value was 3 heads/plant.
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Discussion and conclusions

By imposing the graphical analysis and the statistical
method of mixed inheritance model on the genetic data
of crosses between resistant and susceptible parents,
the following conclusions were made. (1) Inheritance
of the resistance indicated by NIS can be fitted using
the mixed one major gene and polygene inheritance
model. (2) Resistance is almost completely dominant
with the degree of dominance 1.05∼1.39. (3) The es-
timated additive effects of the major gene in each cross
ranged from –2.00∼–1.71 he ads/plant. Differences
might reflect variation in the polygenic background.
(4) The additive and dominance effects of polygenes
can be either positive or negative among crosses,
showing variation in the genetic background. In gen-
eral, the additive and dominance effects of polygenes
were less than those of the major gene. (5) Major
gene heritabilities in F2 are 44.2%∼72.9%, and are
93.1%∼95.0% in F2:3. In contrast, polygenes contrib-
ute only a small fraction to the phenotypic variation,
resulting in low polygenic heritabilities of 0∼13.0% in
F2, and 0∼0.5% in F2:3, respectively. (6) F2 individu-
als and F2:3 families can be classified into different
major gene genotypes by Bayesian rules from pos-
terior probabilities. From the classification, a critical
line to distinguish resistant and susceptible compon-
ents can be determined. A common critical value (3 <

x < 4) was obtained in the three crosses for indic-
ator NIS. Segregation of the effects of major genes
from polygenes and/or environments is important for
understanding the expression of a major gene in rela-
tion to its genetic background, and for predicting the
segregation of a cross in breeding (Jiang et al., 1994).
For the joint segregation analysis of the mixed major
gene and polygene inheritance model based on five
generations including P1, F1, P2, F2 and F2:3, manual
crossing work is needed only once to generate such
a set of materials, i.e. hybridization between the two
parents. So the method is especially suitable for the
quantitative genetic analysis of those crops where it is
not easy to obtain backcross seeds. For those where
it is easy to obtain hybrid seeds, the joint segregation
analysis based on the six generations P1, P2, F1, F2,
B1 and B2 is preferred (Gai & Wang, 1998; Wang et
al., 2001).

The current investigations indicate that more in-
formation can be obtained from the mixed genetic
analysis. In contrast to the traditional genetic analysis
method to find a critical resistance threshold value,
the joint segregation analysis allows the detection of

a less subjective criterion resulting in more results.
Two methods are included in the current paper. One is
graphical analysis. By comparing frequency distribu-
tions with the standard curves drawn by Wang (1996),
whether the major gene exists, the heritabilities of
major gene and polygenes can be approximated. The
other is the joint segregation analysis, by which not
only the genetic model can be identified but genetic
parameters included in the genetic model can also
be estimated. When applying the two methods to the
same genetic data, graphical analysis can be looked
upon as an auxiliary to joint segregation analysis. Ge-
netic data used in the joint segregation analysis consist
of plant-level data from P1, F1, P2 an d F2 and family-
level data from F2:3. Generally, family data are more
precise than plant data because less environmental er-
rors are included in family means. In order to improve
overall precision, the experimental errors should be
minimized. The sample size is also required when
using the segregation analysis. From experience, non-
segregating generations require at least 30 plants and
segregating generations, 100 plant samples; the lower
the heritability of a trait, the greater the number of
samples required for drawing correct conclusions.

In many genetic experiments, the F2:3 generation
is also planted to verify results from the F2 genera-
tion. Each F2:3 line originates from one F2 plant, and
the family mean will be used for genetic analysis. For
model MX-AD-ADI discussed in this paper, F2:3 lines
derived from AA or aa F2 individuals will result in off-
spring showing a normal distribution, but lines derived
from an Aa F2 will show a distribution as if a nor-
mal mixture. Nevertheless, we use family mean data
instead of individual data in each family for genetic
analysis. The family mean of an AA or aa line will still
be distributed as a normal curve. Through simulation
study, if the sample size in a family is larger than 3,
the family mean will approximate a normal curve. In
practical experiments, each family will be planted in a
line, so this condition can be easily satisfied. Thus, the
population consisting of F2:3 family means can also be
viewed as a 1:2:1 normal mixture.

The joint segregation analysis of multiple gener-
ations used in the current paper is different from the
joint scaling test present in Kearsey & Pooni (1996).
The joint segregation analysis views the genetic sys-
tem of a quantitative trait as mixed major gene(s) and
minor genes model and then identifies the existence of
the major gene(s) and estimates related genetic para-
meters for both major gene(s) and minor genes. In
contrast, the joint scaling test views the genetic sys-
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tem of a quantitative trait as a polygenic system. It
cannot tell the genetic behavior of individual genes
in the system. However, based only on phenotypic
data, the joint segregation analysis can only identify
one QTL, whereas the modern QTL mapping methods
allow identification many QTLs. The joint segregation
analysis cannot locate the major gene on a particular
chromosome. As shown in the paper, the joint segreg-
ation analysis is capable of identifying a quantitative
trait locus with large genetic effects without the aid
of marker information. But for further research, QTL
mapping should be used to identify more QTLs and
locate these QTLs on chromosomes.

Acknowledgements

This research was supported in part by the National
863 Program of China, Henan Committee of Science
& Technology and China Scholarship Council. We
thank the reviewers for their relevant comments and
suggestions to the original manuscript. We also thank
Dr Rex Bernardo of Purdue University for his critical
reading of the revised manuscript.

References

Akaike, H., 1977. On entropy maximum principle. In: P.R. Krish-
naiah (Ed.), Applications of Statistics, pp. 27–41. North-Holland
Publishing Company, Amsterdam.

Chiang, H.S. & D.M. Norris, 1983. Morphological and physiolo-
gical parameters of soybean resistance to agromyzid beanflies.
Envir Entomol 12: 260–265.

Dempster, A.P., N.M. Laird & D.B. Rubin, 1977. Maximum likeli-
hood from incomplete data via the EM algorithm. J Royal Stat
Soc, Series B 39: 1–38.

Elston, R.C. & J. Stewart, 1973. The analysis of quantitative traits
for simple genetic models from parental, F1 and backcross data.
Genetics 73: 695–711.

Elston, R.C., 1984. The genetic analysis of quantitative trait differ-
ences between two homozygous lines. Genetics 108: 733–744.

Famula, T.R., 1986. Identifying single genes of large effect in quant-
itative traits using best linear unbiased prediction. J Animal Sci
63: 68–76.

Gai, J., J. Xia, Z. Cui et al., 1989. A study on resistance of soybean
from southern China to soybean agromyzid fly (Melanagromyza
sojae Zehntner). Soybean Sci 8(2): 115–121.

Gai, J. & J. Wang, 1998. Identification and estimation of QTL model
and effects. Theor Appl Genet 97: 1162–1168.

Guo, S.W. & E.A. Thompson, 1992. A Monte Carlo method for
combined segregation and linkage analysis. Amer J Human
Genet 51: 1111–1126.

Hoeschele, I., 1988. Genetic evaluation with data presenting evid-
ence of mixed major gene and polygenic inheritance. Theor Appl
Genet 76: 81–92.

Janss, L.L.G., R. Thompson & J.A.M. van Arendonk, 1995. Ap-
plication of Gibbs sampling for inference in a mixed major
gene-polygene inheritance model in animal populations. Theor
Appl Genet 91: 1137–1147.

Jiang, C., X. Pan & M. Gu, 1994. The use of mixture models to
detect effects of major genes on quantitative characters in a plant
breeding experiment. Genetics 136: 383–394.

Kearsey, M.J. & H.S. Pooni, 1996. The Genetical Analysis of
Quantitative traits. Chapman & Hall, London.

Knott, S.A., C.S. Haley & R. Thompson, 1991. Methods of segreg-
ation analysis for animal breeding data: a comparison of power.
Heredity 68: 299–311.

McLachlan, G.J., 1988. Mixture Models: Inference and Applica-
tions to Clustering. Marcel Dekker, Inc.

Morton, M.E. & C.J. MacLean, 1974. Analysis of family resemb-
lance. III Complex segregation analysis of quantitative traits.
Amer J Human Genet 26: 489–503.

Shoukri, M.M. & G.J. McLachlan, 1994. Parametric estimation in
a genetic mixture model with application to nuclear family data.
Biometrics 50: 128–139.

Wang, J., 1996. Studies on Identification of Major-polygene Mixed
Inheritance of Quantitative Traits and Estimation of Genetic
Parameters (doctorate dissertation). Department of Agronomy,
Nanjing Agricultural University.

Wang, J. & J. Gai, 1998. The segregation analysis of genetic system
and effects of QTLs – Joint analysis of P1, F1, P2, F2 and F2:3.
Acta Agronomica Sinica 24(6): 651–659.

Wang, J., D.W. Podlich, M. Cooper & I.H. DeLacy, 2001. Power
of the joint segregation analysis method for testing mixed ma-
jor gene and polygene inheritance models of quantitative traits.
Theor Appl Genet (in press)

Wei, T., J. Gai, J. Xia et al., 1989. Inheritance of resistance to bean-
fly (Melanagromyza sojae Zehntner) in soybean. Acta Genetica
Sinica 16(6): 436–441.


