第10章 遗传交配设计及其分析方法

王建康

中国农业科学院作物科学研究所

wangjiankang@caas.cn

http://www.isbreeding.net

本章的主要内容

- § 10.1 遗传交配设计的作用
- § 10.2 随机交配群体的遗传设计
- § 10.3 双亲后代群体的遗传设计

§ 10.1 遗传交配设计的作用

环境设计及其作用

- 在进行多环境试验或者品种比较试验时,需要采用一定的田间试验设计,以估计试验误差、提高试验精确度,鉴别出较小的基因型间或品种间的差异。
- 环境设计(environmental design)的主要目的,在于控制随机环境因素的干扰,常见的环境设计包括完全随机、随机区组、拉丁方和格子方等等。

遗传设计及其作用

- 数量遗传研究中,除了需要估计非遗传效应的变异外,主要关心群体的遗传变异或遗传方差。估计遗传方差的目的有以下三个方面:了解参照群体中数量性状的基因作用;对选择响应作出预测;对不同的选择和育种方案进行比较和优化。
- 为达到这一目的,需要开展另外一种设计,即遗传设计,以产生第7和8章介绍的各种亲属关系,进而估计遗传方差中的加性成分。因此,这种遗传设计又称为遗传交配设计(genetic mating design),简称遗传设计或交配设计。

遗传交配设计的种类

- 常用的遗传交配包括NCI双因子巢式交配设计、NCII双因子交叉式交配设计、随机配对杂交设计、NCIII回交设计和三重测交设计等。
- 双列杂交也是常见的一种交配设计,但该设计主要用于亲本的配合力估计,将在第12章中加以介绍。这一章主要介绍双列杂交之外的一些设计及其分析方法。

遗传研究的基础群体

- 一个群体的遗传方差,一般利用该群体中抽出的一组随机样本进行估计。这个待研究的群体,或者遗传和育种所关心的群体,称为参照群体(reference population)或基础群体(base population)。
- 参照群体可以是两个纯系亲本的特定杂交 后代,也可以是许多纯系的混合群体,还 可以是自然条件下的一个随机交配群体。

基础群体的近交系数

- 授粉方式在遗传上与近交系数有密切联系。如果一个基础群体为自交多代的纯系或品种,近交系数达到最大值1。例如,自花授粉作物(如大豆、小麦、水稻等)的纯系,一般称为自交或近交群体,近交系数为1。如果是一个非近交群体,如玉米的天然授粉品种或综合品种等,其近交系数可视为最小,即F=0。
- 近交系数的利用,有效地统一了各种类型的遗传 群体。这里的讨论仅限于二倍体遗传的参照群体, 可以是近交系数为1的纯系群体,近交系数为0的 随机交配大群体,还可以是非近交(F=0)到完 全近交(F=1)之间的任何群体。

遗传交配设计的一般过程

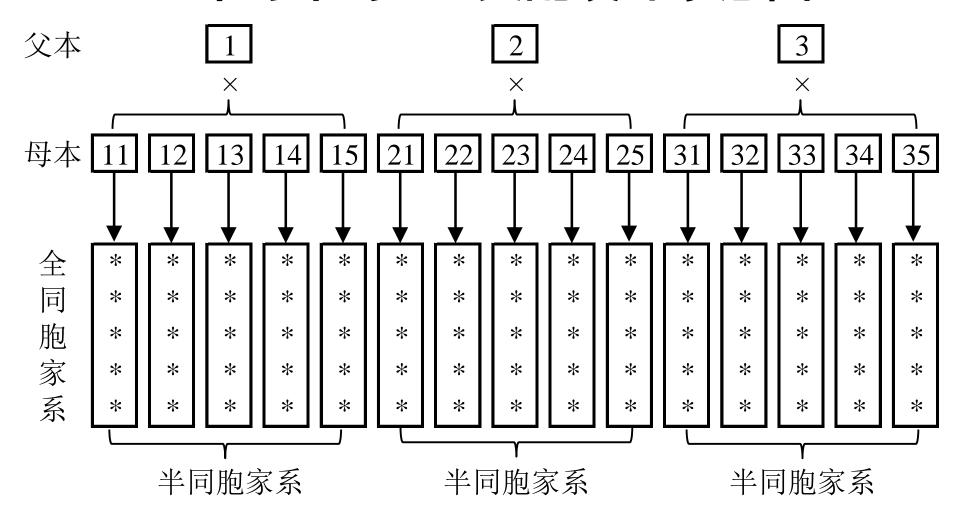
- (1)从参照群体中随机抽取一组个体作为亲本, 创造一种或多种类型的家系。这里的家系可以是 半同胞家系、测交组合、全同胞家系、重组近交 家系、近交或自交家系,甚至是克隆家系等。
- (2)在一组具有代表性的环境下,评价遗传群体的表现,获得数量性状的观测值。可以只对后代开展表型鉴定,也可根据需要对后代和亲代同时开展表型鉴定。评价群体的一组环境是目标环境群体的一个有限样本,由此估计出的遗传方差,严格地说仅适用于特定目标环境下的参照群体。因此,在基因型和环境互作分析中,一般把环境效应设定为随机效应。

遗传交配设计的一般过程

- (3)从方差分析的均方,估计各种方差成分。具有平衡数据的设计,如所有家系在所有环境下作评价,所有亲本之间都进行交配等,可以简化方差分析的过程。具有非平衡数据的设计,分析方法要复杂得多,多采用混合线型模型估计各种方差成分,这里不作详细介绍。
- (4)在方差分析基础上,计算遗传方差和遗传力。根据期望均方估计各种方差成分,根据这些方差成分与遗传方差的关系,估计遗传方差的各种成分,进而估计遗传力和选择响应等遗传参数。

§ 10.2 随机交配群体的遗传设计

- § 10.2.1 NCI双因素巢式交配设计
- § 10.2.2 NCII双因素交叉交配设计
- § 10.2.3 随机配对杂交交配设计
- § 10.2.4 遗传交配设计中的一些问题


North Carolina系列设计

- Comstock和Robinson (1948)、Comstock 等(1949)提出了三种交配设计,又称 North Carolina设计I、II和III(简称NCI、 NCII和NCIII)。
- NCI属于巢式设计, NCII属于双因素因子设计, NCIII属于双亲后代的交配设计。

NCI遗传交配设计

- NCI属于巢式设计,其主要特点是从参照 群体中,随机挑选若干个个体作父本,对 每个父本再随机挑选若干个个体为母本进 行杂交,然后调查若干个杂交后代的表现。
- 因此,NCI设计中,有多少父本就有多少组母本,每个母本只与父本交配一次。
- 如有m个父本,每一父本与n个不同的母本杂交,共计有个亲本个体。假设每个后代家系观察r个个体,共有mnr个个体的观测值。

随机交配群体中随机挑选3个父本、 15个母本的NCI交配设计示意图

NCI交配设计方差分析的线性模型

• 用i=1, 2, ..., m表示NCI设计中的父本,j=1, 2, ..., n表示与父本i杂交的母本,k=1, 2, ..., r表示后代, X_{ijk} 表示后代个体的表型。方差分析的线性模型为:

$$X_{ijk} = \mu + \alpha_i + \beta_{j/i} + \varepsilon_{ijk}$$

• 其中 μ 为总平均, α_i 为父本效应, $\beta_{j/i}$ 为父本i 内的母本效应, ϵ_{iik} 为剩余效应。

与一般方差分析的区别

- 第一,母本效应一定要嵌套在父本内,因此母本效应用符号 $\beta_{i/i}$ 表示,而不是用 β_i 。
- 第二,最后一项ε_{ijk}并非完全来自随机误差。 当亲本具有杂合基因型时,全同胞家系内 的个体仍存在遗传上的分离。因此,除可 估计的亲本效应外,还可能存在一些不可 估计的遗传效应。
- 数量遗传的很多方差分析模型中,经常把模型效应(或可估效应)之外的部分,笼 域型效应(或可估效应)之外的部分,笼 统地称为剩余效应,而不是随机误差。

NCI遗传交配设计的方差分析表

变异来源	自由度	均方	固定模型	随机模型期望均
			期望均方	方
父本间(半同胞	m-1	MS_M	V _R +nrV _M	$V_R + rV_{F/M} + nrV_M$
家系间)				
父本内母本间	m(n-1)	MS _{F/M}	$V_R + rV_{F/M}$	$V_R + rV_{F/M}$
(全同胞家系间)				
剩余效应(全同	mn(r-1)	MS_R	V_R	V_R
胞家系内)				
总和	mnr-1			

遗传方差的估计

- NCI设计中,亲本之间的交配共产生mn个全同胞家系,按照共同父本它们又可以看成m个半同胞家系。方差分析的父本间方差,就等于第8章的半同胞家系间协方差;父本内母本间方差,就等于第8章的全同胞家系间协方差。
- 亲本的近交系数用F表示,在不存在上位性方差的假定下,加性方差 V_{D} 和显性方差 V_{D} 的估计如下:

$$V_{M} = Cov_{HS} = \frac{1+F}{4}V_{A} \quad V_{F/M} = Cov_{FS} = \frac{1+F}{4}V_{A} + \frac{(1+F)^{2}}{4}V_{D}$$

$$V_{A} = \frac{4}{1+F}V_{M} \qquad V_{D} = \frac{4}{(1+F)^{2}}(V_{F/M} - V_{M})$$

一个包含4个父本与不同的7个母本 NCI设计中,2个后代的表型数据

父本	母本 (.	与每个父本	交配的7	个母本各	不相同)	和2个后位	代(用I和	III表示)
	1		2		3		4	
	1	II	1	II	1	П	I	11
1	21.6	23.2	30.8	19.0	27.8	31.0	28.8	24.4
2	33.0	35.6	29.8	28.0	24.8	27.0	33.4	31.4
3	18.4	26.4	19.8	23.8	29.0	32.7	26.8	28.4
4	33.6	33.8	36.0	31.0	32.0	31.0	31.0	31.4

父本	母本(-	与每个父本	交配的7	不相同)	和2个后位	代(用I和	II表示)	
	5		6		7			
	1	11	I	II	I	II		
1	27.8	30.4	23.6	25.4	30.2	31.8		
2	29.8	30.4	26.4	29.6	31.0	31.0		
3	24.8	26.8	28.8	29.6	15.2	18.6		
4	28.4	29.2	33.7	28.6	23.2	25.2		

父本效应和母本效应估计

家系平均	1	2	3	4	5	6	7	行平均
1	22.40	24.90	29.40	26.60	29.10	24.50	31.00	26.84
2	34.30	28.90	25.90	32.40	30.10	28.00	31.00	30.09
3	22.40	21.80	30.85	27.60	25.80	29.20	16.90	24.94
4	33.70	33.50	31.50	31.20	28.80	31.15	24.20	30.58
总平均	28.11							
父本内的								
母本效应	1	2	3	4	5	6	7	父本效应
1	-4.44	-1.94	2.56	-0.24	2.26	-2.34	4.16	-1.27
2	4.21	-1.19	-4.19	2.31	0.01	-2.09	0.91	1.98
3	-2.54	-3.14	5.91	2.66	0.86	4.26	-8.04	-3.18
4	3.12	2.92	0.92	0.62	-1.78	0.57	-6.38	2.47

方差分析和遗传参数估计

变异来源	自由度	平方和	均方	F值	P值		
父本间	3	303.51	101.17	14.80	<0.0001		
母本间/父本	24	621.48	25.89	3.79	0.0005		
剩余	28	191.35	6.83				
总和	55	1116.33					
	剩余方	父本方	母本方				
	差	差	差	V_A	V_{D}	h ²	H^2
固定模型	6.83	6.74	9.53	26.95	11.17	0.60	0.85
随机模型	6.83	5.38	9.53	21.51	16.62	0.48	0.85

NCII双因素交叉交配设计

- NCII属于双因素因子设计,它包含一组父本和一组母本,每一个父本与每一个母本都进行交配。如有*m*个父本,*n*个母本,则共产生*mn*个杂交组合。
- 每个父本与每个母本交配的后代,当然就是一个全同胞家系。同时,对父本来说,这些全同胞家系又可以看作m个半同胞家系;对母本来说,这些全同胞家系又可以看作m个半同胞家系。
- 因此,NCII设计同时产生了mn个全同胞家系、m个父本半同胞家系和n个母本半同胞家系。

NCII交配设计方差分析的线性模型

• 用i=1, 2, ..., m表示NCII设计中的父本,j=1, 2, ..., n表示母本,k=1, 2, ..., r表示后代, X_{ijk} 表示后代个体的表型。方差分析的线性模型为:

$$X_{ijk} = \mu + \alpha_i + \beta_j + \tau_{ij} + \varepsilon_{ijk}$$

• 其中 μ 为总平均, α_i 为父本效应, β_j 为母本效应, τ_{ij} 为亲本间的互作效应, ε_{ijk} 为剩余效应。

NCII遗传交配设计的方差分析表

变异来源	自由度	均方	固定模型期	随机模型期望均方
			望均方	
父本间	m-1	MS_M	V _R +nrV _M	$V_R + rV_{F/M} + nrV_M$
母本间	n-1	MS _F	V _R +mrV _F	V _R +rV _{F/M}
交互作用	(m-1)(n-1)	MS _{MF}	V _R +rV _{MF}	
剩余效应	mn(r-1)	MS_R	V_R	V_R
总和	mnr-1			

遗传方差的估计

- 如不考虑性别差异,亲本的方差 $V_{\rm M}$ 和 $V_{\rm F}$ 均等于第8章的半同胞家系间协方差。父本方差 $V_{\rm M}$ 、母本方差 $V_{\rm F}$ 和互作方差 $V_{\rm MF}$ 之和,就是全同胞家系的方差。
- 亲本的近交系数用F表示,在不存在上位性方差的假定下,加性方差 V_{D} 和显性方差 V_{D} 的估计如下:

$$V_{\rm M} = Cov_{HS} = \frac{1+F}{4}V_{A}$$
 $V_{\rm F} = Cov_{HS} = \frac{1+F}{4}V_{A}$

$$V_{\text{MF}} = V_{\text{FS}} - V_{\text{M}} - V_{\text{F}} = Cov_{\text{FS}} - 2Cov_{\text{HS}} = \frac{(1+F)^2}{4}V_D$$

$$V_A = \frac{4}{1+F}(V_M + V_F)$$
 $V_D = \frac{4}{(1+F)^2}V_{MF}$

一个包含4个父本与7个母本的NCII 设计中,2个后代的表型数据

父本	母本 (.	与每个父本	交配的是	是同样的7	个母本)	, 2 个后 [/]	代用I和II	表示
	1	L		2		3		
	1	II	1	11	1	11	1	II
1	21.6	23.2	30.8	19.0	27.8	31.0	28.8	24.4
2	33.0	35.6	29.8	28.0	24.8	27.0	33.4	31.4
3	18.4	26.4	19.8	23.8	29.0	32.7	26.8	28.4
4	33.6	33.8	36.0	31.0	32.0	31.0	31.0	31.4

父本	母本 (-	与每个父本	交配的是	是同样的7	个母本),2个后代用I和II表示			表示
	5		6		7			
	1	11	1	II	1	II		
1	27.8	30.4	23.6	25.4	30.2	31.8		
2	29.8	30.4	26.4	29.6	31.0	31.0		
3	24.8	26.8	28.8	29.6	15.2	18.6		
4	28.4	29.2	33.7	28.6	23.2	25.2		

全同胞家系平均数(表上) 父本效应、母本效应和互作效应(表下)

家系平均	1	2	3	4	5	6	7	行平均
1	22.40	24.90	29.40	26.60	29.10	24.50	31.00	26.84
2	34.30	28.90	25.90	32.40	30.10	28.00	31.00	30.09
3	22.40	21.80	30.85	27.60	25.80	29.20	16.90	24.94
4	33.70	33.50	31.50	31.20	28.80	31.15	24.20	30.58
列平均	28.20	27.28	29.41	29.45	28.45	28.21	25.78	28.11
互作	1	2	3	4	5	6	7	父本效应
1	-4.53	-1.11	1.26	-1.58	1.92	-2.44	6.49	-1.27
2	4.13	-0.35	-5.49	0.98	-0.32	-2.19	3.25	1.98
3	-2.63	-2.30	4.61	1.33	0.52	4.16	-5.70	-3.18
4	3.03	3.76	-0.38	-0.72	-2.12	0.47	-4.04	2.47
母本效应	0.09	-0.84	1.30	1.34	0.34	0.10	-2.34	

方差分析和遗传参数估计

变异来源	自由度	平方和	均方	F值	P值			
父本间	3	303.51	101.17	14.80	<0.000)1		
母本间	6	78.21	13.03	1.91	0.1147	7		
互作	18	543.27	30.18	4.42	0.0002	_		
剩余	28	191.35	6.83					
总和	55	1116.33						
	剩余方	父本方	母本	互作				
效应模型	差	差	方差	方差	V_A	V_{D}	h ²	H^2
固定模型	6.83	6.74	0.78	11.67	15.03	46.70	0.22	0.90
随机模型	6.83	5.07	0.00	11.67	10.14	46.70	0.16	0.89

随机配对交配设计

- 随机配对交配设计(randomly paired mating design),最早在双亲 F_2 群体中提出,因此又称双亲杂交设计(biparental cross design)。
- 该设计首先在2个纯合亲本P₁和P₂间杂交产生F₁杂种,F₁杂种自交(这里的自交与随机交配等价)产生F₂分离世代,在F₂群体中随机挑选成对个体交配,产生全同胞家系。

双亲杂交F2群体的随机配对交配

交配类型	中亲值	频率	后代	基因型#	项率	- 家系平均数	家系内方差
工能关至	中永恒	<i>炒</i> 火华	AA	Aa	aa	- 多尔丁均奴	多尔内力左
$AA \times AA$	a	$\frac{1}{16}$	1	0	0	a	0
$AA \times Aa$	$\frac{1}{2}(a+d)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$		$\frac{1}{2}(a+d)$	$\frac{1}{4}(a-d)^2$
$AA \times aa$	0	$\frac{1}{8}$	0	1	0	d	0
$Aa \!\! imes \!\!Aa$	d	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2}d$	$\frac{1}{2}a^2 + \frac{1}{4}d^2$
<i>Aa×aa</i>	$\frac{1}{2}(d-a)$	$\frac{1}{4}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}(d-a)$	$\frac{1}{4}(a+d)^2$
aa×aa	- a	$\frac{1}{16}$	0	0	1	- a	0
均值	$\frac{1}{2}d$					$\frac{1}{2}d$	$\frac{1}{4}a^2 + \frac{3}{16}d^2$
方差	$\frac{1}{2}a^2 + \frac{1}{4}d^2$					$\frac{1}{4}a^2 + \frac{1}{16}d^2$	

家系间和家系内遗传方差的构成

根据6种家系平均数计算家系间遗传方差,根据6种家系内的方差计算家系内遗传方差。

$$V_{bG} = \frac{1}{4}a^2 + \frac{1}{16}d^2$$
 $V_{wG} = \frac{1}{4}a^2 + \frac{3}{16}d^2$

• 推广到多基因时:

$$V_{bG} = \frac{1}{2}V_A + \frac{1}{4}V_D$$
 $V_{wG} = \frac{1}{2}V_A + \frac{3}{4}V_D$

 F₂及其随机交配后代,可以看作等位基因A和 a频率均为0.5的随机交配群体。第8章有关随机交配群体的很多结论,在这里也同样适用。

家系间和家系内表型方差的构成

• 考虑到家系内和家系间可能有着不同的环境方差,分别用 V_{Ew} 和 V_{Ec} 表示。因此,家系间和家系内的表型方差为:

$$V_{bP} = \frac{1}{2}V_A + \frac{1}{4}V_D + V_{Ec}$$
 $V_{wP} = \frac{1}{2}V_A + \frac{3}{4}V_D + V_{Ew}$

• 无家系结构的表型方差为:

$$V_P = V_A + V_D + V_{Ec} + V_{Ew}$$

上面公式考虑的是家系很大的情形,这时忽略了家系内的抽样方差。对于较小的家系, 计算家系间方差时,还需考虑抽样方差,即:

$$V_{bP} = \frac{1}{2}V_A + \frac{1}{4}V_D + V_{Ec} + \frac{1}{n}V_{wP} \qquad V_{wP} = \frac{n-1}{n}(\frac{1}{2}V_A + \frac{3}{4}V_D + V_{Ew})$$

配对设计方差分析的线性模型

• 用i=1, 2, ..., m表示配对杂交产生的全同胞家系,k=1, 2, ..., r表示后代, X_{ik} 表示后代个体的表型。父本和母本都有m个,共2m个亲本个体。方差分析的线性模型为:

$$X_{ik} = \mu + \alpha_i + \varepsilon_{ik}$$

• 其中 μ 为群体均值, α_i 为家系效应, ϵ_{ik} 为剩余效应。

配对设计的方差分析表

变异来源	自由度	均方	期望均方
家系间	m-1	MS _{MF}	V_R + rV_M
剩余效应	m(r-1)	MS _R	V_R
总和	mr-1		

遗传方差的估计

家系间方差就是全同胞家系的协方差,剩余 方差就是家系内方差。

$$V_{\text{MF}} = \frac{1}{2}V_A + \frac{1}{4}V_D$$
 $V_R = \frac{1}{2}V_A + \frac{3}{4}V_D + V_{Ew}$

- 随机配对设计只产生全同胞一种家系结构,如果没有环境方差的估计,还是无法将加性和显性方差分开。如果忽略显性方差,这时可以把 $2V_{MF}$ 作为加性方差 V_{A} 的估计。
- 如果同时具有亲本的表型数据,也可以用后 代与中亲值的协方差来估计加性方差。

遗传交配设计中的一些问题

- 遗传交配设计的目是为了估计数量性状在 一个参照群体中的各种遗传参数,如环境 方差、遗传方差、加性方差、显性方差和 遗传力等等。
- 为准确估计这些参数,首先要求交配设计的亲本数量要尽可能大,作为参照群体的一组样本,亲本要具有代表性。

遗传交配设计中的一些问题

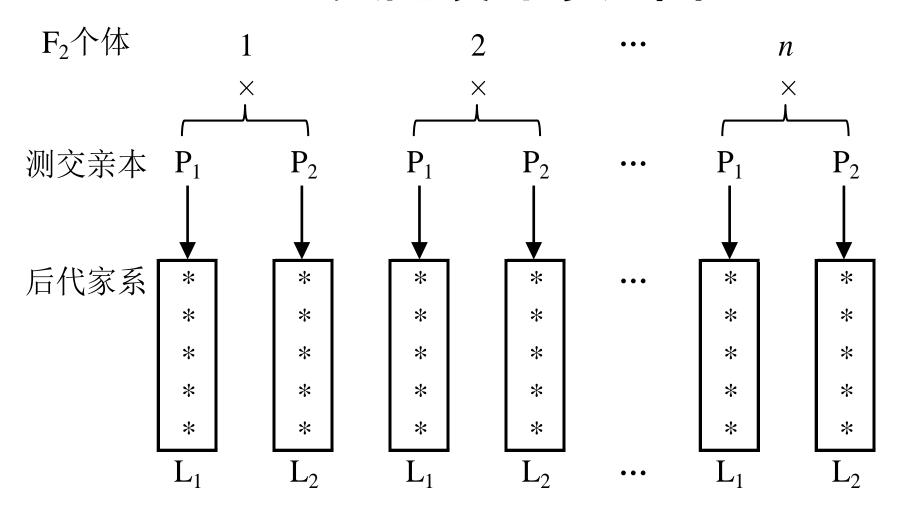
- 此外,每个杂交组合的后代也是一个群体,还可能存在遗传分离,后代个体也要求有一定的数量和代表性。因此遗传设计中,既要考虑亲本个体的抽样问题,又要同时考虑后代个体的抽样问题。但比较来看,亲本的抽样问题要比后代的抽样问题重要得多。
- 亲本越多、杂交组合越多,群体遗传参数的估计就会越准确,但试验花费也就越大。后代家系大小也同样决定试验规模和花费。因此,开展遗传设计时,需要在一定试验规模和费用的限制条件下,考虑亲本个数、组合个数、后代个数如何合理配置,以获得最佳的遗传研究结果。

不同交配设计的比较

- 全面系统地评价不同设计的优劣,还是相当困难的, 这需要开展大量的遗传试验或模拟研究,才能了解不 同设计对遗传参数估计的精确度。这里我们不考虑参 照群体在性别上的差异,只是从亲本数量、组合个数、 后代群体大小、整体花费等方面,对不同设计进行一 个粗略的评价。
- 例如,用*mn*表示杂交组合的个数,前面已经说过, NCI设计要用到*m+mn*个亲本个体,NCII设计要用到 *m+n*个亲本个体,随机配对设计要用到2*mn*个亲本个 体。显然,随机配对的亲本数高于NCI,NCII的亲本 数最低。从这一点讲,配置相同个数的杂交,随机配 对设计的亲本样本量最大,对参照群体的代表性最强。

不同交配设计的比较

- 但是,亲本数量并不是衡量交配设计优劣的唯一标准。在前面的分析方法中,我们看到随机配对设计只产生全同胞一种家系结构,无法区分家系内的遗传方差和环境方差,需要借助其它信息,才能把加性和显性方差分开。
- NCII设计同时产生一组全同胞家系、两组半同胞家系,能够估计出加性、显性和剩余三种方差成分。 NCI设计也能估计出加性、显性和剩余三种方差成分,但只有一组全同胞家系和一组半同胞家系。从交配设计提供的遗传信息来看,NCII反而是最好的设计。但是,如果同时考虑亲本数量和提供遗传信息两方面的内容,NCI显然成为最好的交配设计。


§ 10.3 双亲后代群体的遗传设计

- § § 10.3.1 NCIII回交交配设计
- § 10.3.2 TTC三重测交交配设计
- § 10.3.3 NCIII和TTC模拟数据分析

NCIII回交交配设计

• NCIII属于回交类型的遗传交配设计,它从两个纯系P₁和P₂的杂交F₂群体中,随机抽取*n*个个体,分别与原来的两个亲本回交,共产生2*n*个杂交组合,每个组合观测*r*个后代个体。用于回交的两个亲本有时也称测交亲本。

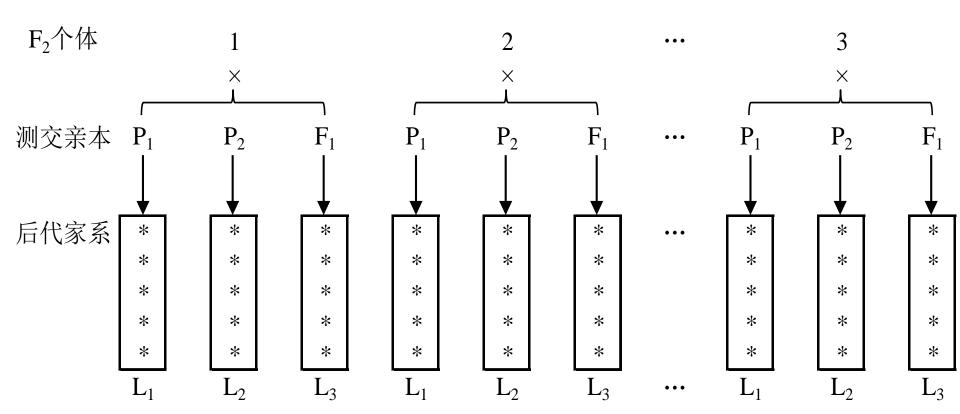
NCIII交配设计示意图

家系类型、家系均值(分别用 L_1 和 L_2 表示)、以及两种家系之和、之差的均值和方差

F ₂ 基因型和频率	家系 L ₁ 基因型和均值	家系 L ₂ 基因型和均值	L_1 + L_2	L_1 - L_2
$AA, \frac{1}{4}$	AA, a	Aa, d	a+d	a-d
Aa, $\frac{1}{2}$	$\frac{1}{2}AA + \frac{1}{2}Aa, \frac{1}{2}(a+d)$	$\frac{1}{2}Aa + \frac{1}{2}aa, \frac{1}{2}(-a+d)$	d	a
$aa, \frac{1}{4}$	Aa, d	aa, -a	-a+d	a+d
总平均	$\frac{1}{2}(a+d)$	$\frac{1}{2}(-a+d)$	d	a
方差	$\frac{1}{8}(a-d)^2$	$\frac{1}{8}(a+d)^2$	$\frac{1}{2}a^2$	$\frac{1}{2}d^2$

遗传方差的估计

 如果考虑来自同一个F₂个体的两个回交家系的和与差,和的方差只与加性方差有关。 差的方差只与显性方差有关。当家系足够大时,可以忽略家系均值中的误差方差,于是得到参照群体F₂加显性方差的估计。


$$V(L_1 + L_2) = \frac{1}{2}a^2 = V_A \qquad V(L_1 - L_2) = \frac{1}{2}d^2 = 2V_D$$

$$V_A = V(L_1 + L_2) \qquad V_D = \frac{1}{2}V(L_1 - L_2)$$

TTC三重测交交配设计

- 在不存在互作的情况下,NCIII能无偏地估计 F_2 群体的加性方差 V_A 和显性方差 V_D 。但是,并非所有遗传群体中的性状都可以用加显性模型来解释。
- Kearsey和Jinks(1968)对NCIII设计加以改进,提出了三重测交法(Triple Test Cross design),简称TTC设计。该交配设计用 P_1 、 P_2 和 F_1 同时作为测交亲本,与随机抽取的 F_2 个体杂交。每个 F_2 个体都得到三套后代家系,故称三重测交。

TTC遗传交配设计示意图

三类家系的均值和方差,以及三个 线性组合的均值和方差

F ₂ 基因型和频率	L ₁ 家系	L_2 家系	L₃家系	$L_1 + L_2 + L_3$	L_1 - L_2	L ₁ +L ₂ -2L ₃
AA, $\frac{1}{4}$	а	d	$\frac{1}{2}(a+d)$	$\frac{3}{2}(a+d)$	a-d	0
Aa, $\frac{1}{2}$	$\frac{1}{2}(a+d)$	$\frac{1}{2}(-a+d)$	$\frac{1}{2}d$	$\frac{3}{2}d$	a	0
aa, $\frac{1}{4}$	d	- a	$\frac{1}{2}(-a+d)$	$\frac{3}{2}(-a+d)$	a+d	0
总平均	$\frac{1}{2}(a+d)$	$\frac{1}{2}(-a+d)$	—	$\frac{3}{2}d$	a	0
方差	$\frac{1}{8}(a-d)^2$	$\frac{1}{8}(a+d)^2$	$\frac{1}{8}a^2$	$\frac{9}{8}a^2$	$\frac{1}{2}d^2$	0

上位性互作的检验

- 在加显性模型基础之上,线性组合 L_1+L_2 - $2L_3$ 对不同的 F_2 基因型均为0,期望方差也应该为0。
- 因此,实际数据中,可以从这个线性组合的方差显著性,来大致判断是否存在显著的上位性,或者说,对采用的加显性模型进行适合性检验。

遗传方差的估计

• 线性组合 $L_1+L_2+L_3$ 的方差只含加性方差,组合 L_1-L_2 的方差为只含显性方差。当家系足够大时,忽略这些线性组合中的误差方差,得到参照群体 F_2 的加显性方差为:

$$V_A = \frac{4}{9}V(L_1 + L_2 + L_3)$$
 $V_D = \frac{1}{2}V(L_1 - L_2)$

NCIII和TTC的一组模拟数据

F2个体	L₁家系:	$F_2 \times P_1$	L,家系:	$F_2 \times P_2$	L ₃ 家系:	$F_2 \times F_1$
	观测口	观测Ⅱ	观测L	观测Ⅱ	观测I	观测Ⅱ
1	4.21	4.08	4.44	3.60	4.08	5.48
2	6.12	5.37	3.44	3.60	5.37	5.07
3	5.19	4.93	3.58	4.12	4.93	4.67
4	5.31	5.43	3.00	3.13	5.43	3.85
5	4.40	4.65	3.51	3.91	4.65	4.08
6	4.72	5.06	3.29	3.74	5.06	5.38
7	5.00	4.86	2.81	4.17	4.86	4.92
8	4.44	4.54	2.76	3.33	4.54	2.95
9	4.31	4.33	4.26	4.76	4.33	4.85
10	4.60	5.04	3.31	3.28	5.04	3.85
11	5.75	5.27	4.10	4.05	5.27	3.74
12	5.21	3.93	3.56	3.44	3.93	3.83
13	3.40	4.51	4.68	3.94	4.51	3.85
14	4.12	3.93	2.45	3.52	3.93	3.95
15	4.17	4.30	3.52	2.86	4.30	2.94
16	3.84	4.40	2.31	1.98	4.40	3.24

家 其 组 重 均 数 性 的 平 数

F,个体	L_1	L ₂	L ₃	L ₁ +L ₂	L ₁ -L ₂	L ₁ +L ₂ +L ₃	L ₁ +L ₂ -2L ₃
1	4.15	4.02	5.14	8.17	0.12	13.31	-2.12
2	5.75	3.52	4.73	9.27	2.23	13.99	-0.18
3	5.06	3.85	4.16	8.91	1.21	13.07	0.59
4	5.37	3.07	3.73	8.44	2.31	12.16	0.98
5	4.53	3.71	4.41	8.24	0.82	12.64	-0.58
6	4.89	3.52	4.60	8.41	1.38	13.01	-0.80
7	4.93	3.49	4.87	8.42	1.44	13.29	-1.32
8	4.49	3.05	3.08	7.54	1.45	10.62	1.38
9	4.32	4.51	4.51	8.83	-0.19	13.34	-0.19
10	4.82	3.30	4.27	8.12	1.53	12.39	-0.42
11	5.51	4.08	3.94	9.59	1.44	13.53	1.71
12	4.57	3.50	4.02	8.07	1.07	12.09	0.04
13	3.96	4.31	3.98	8.27	-0.36	12.24	0.32
14	4.03	2.99	3.87	7.01	1.04	10.88	-0.72
15	4.24	3.19	3.41	7.43	1.05	10.84	0.60
16	4.12	2.15	3.03	6.27	1.98	9.30	0.21
均值	4.67	3.51	4.11	8.18	1.16	12.29	-0.03
方差	0.28	0.34	0.37	0.69	0.59	1.65	0.97

遗传参数估计

交配设计	剩余方	加性方	显性方	狭义遗传	广义遗传
	差 V _R	差V _A	差V _D	力h²	力H ²
NCIII	0.1897	0.6886	0.2957	0.5866	0.8384
TTC	0.1897	0.7335	0.2957	0.6018	0.8444

永久遗传群体和暂时遗传群体

- 双亲杂交衍生的后代,是植物遗传研究中最常见的群体类型。根据个体或家系的基因型是否纯合, 双亲后代可分为暂时群体和永久群体两类。
- 永久群体是由一组(大小为几十至数百)纯系构成,便于开展精确的多环境重复表型鉴定试验。
- 暂时群体中,个体有着互不相同的杂合基因型, 表型鉴定只能建立在单个个体的水平上,难以准 确评价数量性状的表型,也无法开展基因型和环 境互作研究。

永久遗传群体和暂时遗传群体

- 双亲杂种F₁的一组加倍单倍体(doubled haploid) (简称DH)和一组重组近交家系(recombination inbred line)(简称RIL)都是永久群体。每个DH 或RIL家系都是纯系,家系内所有个体具有相同的 纯合基因型,自交之后基因型不发生改变。
- 利用DH或RIL群体,可以对数量性状开展准确的表型鉴定试验。但这两种群体存在的问题是,由于群体中没有杂合基因型,无法用来研究显性效应以及与显性有关的上位性效应,而这些信息在杂种优势利用研究中必不可少。

永久F2群体的设计

- 如不存在选择,每个双亲中存在分离的座位上,纯合基因型*AA*和*aa*在DH或RIL群体中的频率都是1/2。
- 如在这些DH或RIL家系之间配置大量的杂交 F_1 ,并把它们也看成一个群体,则相当于(AA/2+aa/2)×(AA/2+aa/2)产生的后代群体,三种基因型AA、Aa和aa的频率分别为1/4、1/2和1/4,正好就是原来双亲 F_2 群体的基因型频率。
- 对于多基因的情况,这一结论也基本成立。

永久F2群体的设计

- 换句话说,利用大量DH或RIL家系之间的杂交,可以重演双亲F₂群体的各种基因型。每两个DH或RIL家系的杂交,可以产生基因型完全相同的多个个体。
- 这种方法产生的F₂群体是可以重复的,群体中的每种基因型也是可以重复的,因此称为永久F₂群体。
- 显然,与永久 F_2 类似,也可以将DH或RIL 家系与原来的两个亲本回交,从而产生出两个方向的永久回交群体。

永久F2群体中的重组率

- 对于连锁的两个座位,DH家系产生的永久F₂仍然与双亲F₂群体完全等价。但RIL产生的永久F₂与原始的双亲F₂群体略有差异,这种差异主要反映在重组率上。
- DH家系群体中,重组基因型的比例等于一次交换的重组率r。RIL家系群体中,重组基因型的比例等于累计重组率R。累计重组率与一次交换重组率的关系是R=2r/(1+2r),当r较小时, $R\approx 2r$ 。
- 因此,如果利用DH家系的永久 F_2 估计重组率的话,仍然是一次交换的重组率r;如果利用RIL家系产生的永久 F_2 估计重组率,得到的是累计重组率R,而不是一次交换的重组率。

永久F2群体的基因型数据

- 除表型鉴定方面的优势外,永久F₂群体的基因型还可以由DH或RIL家系推测出来。因此,无需再对永久F₂群体开展基因型鉴定。
- 双亲永久群体的构建一般需要数年时间,产生永久F₂又需要配置新的大量杂交组合。有些植物物种的人工杂交相对容易,有些还相当困难。尽管如此,目前人们已创建了不少永久F₂群体,并用于数量性状遗传和杂种优势机理等方面的研究。

自交系'综3'和'87-1'衍生的10个RIL家系 在三个环境下小区产量的三次重复观测数据

基因型	环境I			环境Ⅱ	下境Ⅱ			环境Ⅲ		
编号	重复I	重复Ⅱ	重复Ⅲ	重复I	重复Ⅱ	重复Ⅲ	重复I	重复Ⅱ	重复Ⅲ	
RIL02	5.5	6.0	5.5	2.6	2.7	2.4	2.3	2.3	2.3	
RIL14	1.7	2.5	1.6	2.7	2.5	2.7	2.6	2.2	2.7	
RIL23	3.1	3.8	4.9	2.9	3.0	2.7	2.8	3.1	3.1	
RIL42	3.8	3.5	3.3	2.6	2.2	1.8	4.0	3.7	3.2	
RIL52	3.5	3.9	3.0	3.1	2.6	2.7	3.6	3.1	3.2	
RIL58	4.1	6.0	4.9	1.9	2.2	2.1	2.2	2.9	1.7	
RIL69	4.8	4.5	3.5	1.8	1.7	2.3	2.4	2.0	2.6	
RIL72	4.3	2.8	3.5	3.8	3.6	3.8	3.7	5.0	4.5	
RIL73	5.2	5.5	4.6	4.3	4.1	4.1	4.9	4.3	4.0	
RIL78	3.8	4.1	4.9	2.8	3.3	2.8	3.7	3.2	3.5	

10个永久F₂家系在三个环境下 小区产量的三次重复观测数据

基因型	环境			环境Ⅱ	境II			环境Ⅲ		
编号	重复I	重复Ⅱ	重复Ⅲ	重复I	重复Ⅱ	重复Ⅲ	重复I	重复Ⅱ	重复Ⅲ	
IF1	7.9	6.8	8.1	6.3	5.6	5.1	7.7	7.2	7.4	
IF2	6.7	8.9	7.7	8.3	6.3	5.6	5.6	6.3	6.2	
IF3	5.9	6.1	7.3	3.5	2.7	1.9	5.8	5.6	5.8	
IF4	9.0	7.9	8.2	6.9	5.5	7.9	7.8	6.6	8.5	
IF6	7.7	8.7	8.1	4.2	4.7	5.7	7.1	7.2	6.7	
IF7	8.4	8.5	8.6	6.4	6.1	7.2	7.1	6.6	6.9	
IF8	7.1	8.9	7.5	6.6	6.6	5.7	6.1	6.5	6.5	
IF9	9.4	6.6	7.6	6.1	5.2	4.0	6.6	6.6	5.4	
IF10	7.4	7.4	8.3	4.5	4.3	4.1	4.5	5.4	5.0	
IF11	6.9	7.0	9.0	3.6	2.9	1.2	3.9	4.7	5.2	

单环境方差分析、以及遗传方差 和遗传力估计

环境	均方			方差估	计值	广义遗	传力
	基因型	随机误 差	F统计 量	基因型	随机误 差	一次重 复	重复平均数
	RI	L群体					
环境I	3.359	0.402	8.361	0.986	0.402	0.710	0.880
环境Ⅱ	1.501	0.055	27.210	0.482	0.055	0.897	0.963
环境Ⅲ	2.032	0.160	12.686	0.624	0.160	0.796	0.921
	永	久F ₂ 群体	•				
环境I	0.965	0.773	1.249	0.064	0.773	0.077	0.199
环境Ⅱ	7.399	0.718	10.306	2.227	0.718	0.756	0.903
环境Ⅲ	2.982	0.266	11.214	0.905	0.266	0.773	0.911

联合方差分析的遗传方差估计

群体类 型	方差估	计值		广义遗传力估 计值			
	环境	基因型	基因型 和环境 互作	随机误差	, , , ,	环境和 重复的 平均数	
RIL群体	0.425	3.202	0.333	0.206	0.307	0.619	
永久F ₂ 群体	1.722	7.747	0.796	0.586	0.446	0.799	

永久F2群体加显性方差的估计

- 如果用 V_A 和 V_D 表示分别永久 F_2 群体(或原始亲本的杂交 F_2 群体)的加性和显性方差,则RIL群体的遗传方差为 $2V_A$,永久 F_2 群体的遗传方差为 V_A+V_D 。
- 因此,可以利用RIL群体遗传方差的一半作为加性方差 V_A 的估计,永久 F_2 群体遗传方差减去加性方差作为显性方差 V_D 的估计。

'豫玉22'永久F₂群体的加性方差、 显性方差和遗传力

			误差方		狭义遗	
表型数据	万差	万差	差	方差	传力	传力
环境I	0.493	0.000	0.773	1.266	0.389	0.389
环境Ⅱ	0.241	1.986	0.718	2.945	0.082	0.756
环境Ⅲ	0.312	0.593	0.266	1.171	0.266	0.773
联合分析	1.601	6.146	1.722	9.469	0.169	0.818

• 表中的误差方差是永久F₂群体的方差分析结果。永久F₂在环境I 的遗传方差很低,估计出的显性方差为负值,表中设为0。其它 两个环境及联合分析时,得到的显性方差都远高于加性方差, 狭义遗传力也远低于广义遗传力。说明超显性可能在'豫玉22'的杂种优势中起重要作用,同时也说明'在豫玉22'的RIL群体中,难以利用两个RIL的产量来预测它们的杂种F₁表现。